Abstract

We present the dispersion relations for symmetric planar waveguides in general isotropic media. The planar waveguide structure that utilizes chiral media in the cladding regions is emphasized. Unlike other symmetric planar waveguide configurations in isotropic media, this structure possesses a nondegenerate lowest-order mode. Therefore symmetric planar waveguides using chiral cladding materials can support single-mode operation.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Engheta, P. Pelet, Opt. Lett. 14, 593 (1989).
    [CrossRef] [PubMed]
  2. P. Pelet, N. Engheta, IEEE Trans. Antennas Propag. AP-38, 90 (1990).
    [CrossRef]
  3. N. Engheta, P. Pelet, Opt. Lett. 16, 723 (1991).
    [CrossRef] [PubMed]
  4. H. Cory, I. Rosenhouse, Proc. Inst. Electr. Eng. Part. H 138, 51 (1991).
  5. M. Oksanen, P. K. Koivisto, I. V. Lindell, Proc. Inst. Electr. Eng. Part. H 138, 327 (1991).
  6. M. Chien, Y. Kim, H. Grebel, Opt. Lett. 14, 826 (1989).
    [CrossRef] [PubMed]
  7. D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
    [CrossRef]
  8. K. M. Flood, “Distributed feedback in and distributed Bragg reflection from periodic chiral structures,” Ph.D. dissertation (Department of Electrical Engineering, University of Pennsylvania, Philadelphia, Pa., December, 1995).

1991 (3)

N. Engheta, P. Pelet, Opt. Lett. 16, 723 (1991).
[CrossRef] [PubMed]

H. Cory, I. Rosenhouse, Proc. Inst. Electr. Eng. Part. H 138, 51 (1991).

M. Oksanen, P. K. Koivisto, I. V. Lindell, Proc. Inst. Electr. Eng. Part. H 138, 327 (1991).

1990 (1)

P. Pelet, N. Engheta, IEEE Trans. Antennas Propag. AP-38, 90 (1990).
[CrossRef]

1989 (2)

1979 (1)

D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
[CrossRef]

Chien, M.

Cory, H.

H. Cory, I. Rosenhouse, Proc. Inst. Electr. Eng. Part. H 138, 51 (1991).

Engheta, N.

Flood, K. M.

K. M. Flood, “Distributed feedback in and distributed Bragg reflection from periodic chiral structures,” Ph.D. dissertation (Department of Electrical Engineering, University of Pennsylvania, Philadelphia, Pa., December, 1995).

Grebel, H.

Jaggard, D. L.

D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
[CrossRef]

Kim, Y.

Koivisto, P. K.

M. Oksanen, P. K. Koivisto, I. V. Lindell, Proc. Inst. Electr. Eng. Part. H 138, 327 (1991).

Lindell, I. V.

M. Oksanen, P. K. Koivisto, I. V. Lindell, Proc. Inst. Electr. Eng. Part. H 138, 327 (1991).

Mickelson, A. R.

D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
[CrossRef]

Oksanen, M.

M. Oksanen, P. K. Koivisto, I. V. Lindell, Proc. Inst. Electr. Eng. Part. H 138, 327 (1991).

Papas, C. H.

D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
[CrossRef]

Pelet, P.

Rosenhouse, I.

H. Cory, I. Rosenhouse, Proc. Inst. Electr. Eng. Part. H 138, 51 (1991).

Appl. Phys. (1)

D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

P. Pelet, N. Engheta, IEEE Trans. Antennas Propag. AP-38, 90 (1990).
[CrossRef]

Opt. Lett. (3)

Proc. Inst. Electr. Eng. Part. H (2)

H. Cory, I. Rosenhouse, Proc. Inst. Electr. Eng. Part. H 138, 51 (1991).

M. Oksanen, P. K. Koivisto, I. V. Lindell, Proc. Inst. Electr. Eng. Part. H 138, 327 (1991).

Other (1)

K. M. Flood, “Distributed feedback in and distributed Bragg reflection from periodic chiral structures,” Ph.D. dissertation (Department of Electrical Engineering, University of Pennsylvania, Philadelphia, Pa., December, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustration of the symmetric chiral planar waveguide.

Fig. 2
Fig. 2

Dispersion curves for a symmetric planar waveguide with (a) a chiral core and an achiral cladding and (b) an achiral core and a chiral cladding. Both the core and the cladding are nonmagnetic, with the core having an average index of refraction of 3 and the cladding having an average index of refraction of 2. The chiral material’s normalized chirality admittance is 0.1.

Fig. 3
Fig. 3

Illustration of the asymmetric, achiral, planar waveguide approximation to the symmetric planar waveguide with a chiral cladding and an achiral core. The two achiral waveguide elements on the top account for the asymmetric properties caused by dissimilar evanescent decays observed in the two cladding regions.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

× × { E H } - 2 ω μ ξ c × { E H } - ω 2 μ ɛ { E H } = 0.
k ± = k ( ± ξ ¯ c + 1 + ξ ¯ c 2 ) ,
{ [ k x + k 1 + sin cos ( k x + a 2 ) γ 1 + k 2 + sin cos ( k x + a 2 ) ] [ k x - k 1 - sin cos ( k x - a 2 ) + γ 1 - k 2 - sin cos ( k x - a 2 ) ] ( η c 1 + η c 2 ) 2 } + { [ k x + k 1 - sin cos ( k x + a 2 ) ± γ 1 - k 2 + sin cos ( k x + a 2 ) ] [ ± k x - k 1 + sin cos ( k x - a 2 ) + γ 1 + k 2 - sin cos ( k x - a 2 ) ] ( η c 1 + η c 2 ) 2 } = 0 ,
ω c ± = m π a [ μ 2 ɛ 2 ( 1 ± 2 ξ ¯ c 2 1 + ξ ¯ c 2 2 + 2 ξ ¯ c 2 2 ) - μ 1 ɛ 1 ] 1 / 2 ,
sin cos [ ( k 2 2 - k 1 + 2 ) 1 / 2 a 2 ] = 0 ,
sin cos [ ( k 2 2 - k 1 + 2 ) 1 / 2 a 2 ] = ( η c 1 2 + η 2 2 ) k 2 ( k 1 + 2 - k 1 - 2 ) 1 / 2 [ 4 η c 1 2 + η 2 2 ( k 2 2 - k 1 + 2 ) + ( η c 1 2 + η 2 2 k 2 2 ) 2 ( k 1 + 2 - k 1 - 2 ) ] 1 / 2 .
ω c + = 1 a μ 0 ɛ 0 m π ( n 2 2 - n 1 + 2 ) 1 / 2 ,
ω c - 1 a μ 0 ɛ 0 { m π ( n 2 2 - n 1 + 2 ) 1 / 2 + 2 ( η c 1 2 + η 2 2 ) n 2 ( n 1 + 2 - n 1 - 2 ) 1 / 2 [ 4 η c 1 2 η 2 2 n 1 - 2 ( n 2 2 - n 1 + 2 ) 2 + ( η c 1 2 η 2 2 ) 2 n 2 2 - n 1 - 2 ( n 2 2 - n 1 + 2 ) 1 / 2 } .

Metrics