Abstract

Near-field photodetection optical microscopy (NPOM) is a fundamentally new approach to near-field optical microscopy. This scanning-probe technique uses a nanometer-scale photodiode detector as a near-field optical probe. We have fabricated probes for NPOM that have optically sensitive areas as small as 100 nm × 100 nm. These new NPOM probes have been employed to image light transmitted through holes in an aluminum film. Near-surface optical interference is observed near defects and edges of the aluminum film. The optical edge response is shown to be of the order of 100 nm.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, J. K. Trautman, Science 257, 189 (1992).
    [CrossRef] [PubMed]
  2. H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, K. W. West, Science 264, 1740 (1994).
    [CrossRef] [PubMed]
  3. J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
    [CrossRef]
  4. F. Zenhausen, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).
    [CrossRef]
  5. D. R. Busath, R. C. Davis, C. C. Williams, Proc. SPIE 1855, 75 (1993).
    [CrossRef]
  6. H. U. Danzebrink, U. C. Fischer, in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 303–308.
  7. D. R. Busath, “Near-field photodetection probe for near-field optical microscopy,” M. S. thesis (University of Utah, Salt Lake City, Utah, 1994).
  8. H.-U. Danzebrink, J. Microsc. 167, 276 (1994).
    [CrossRef]
  9. R. C. Davis, C. C. Williams, P. Neuzil, Appl. Phys. Lett. 66, 2309 (1995).
    [CrossRef]
  10. G. Kolb, K. Karrai, G. Abstreiter, Appl. Phys. Lett. 65, 3090 (1994).
    [CrossRef]
  11. K. Lieberman, A. Lewis, Appl. Phys. Lett. 62, 1335 (1993).
    [CrossRef]
  12. C. C. Williams, H. K. Wickramasinghe, Appl. Phys. Lett. 49, 1587 (1986).
    [CrossRef]

1995

R. C. Davis, C. C. Williams, P. Neuzil, Appl. Phys. Lett. 66, 2309 (1995).
[CrossRef]

1994

G. Kolb, K. Karrai, G. Abstreiter, Appl. Phys. Lett. 65, 3090 (1994).
[CrossRef]

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, K. W. West, Science 264, 1740 (1994).
[CrossRef] [PubMed]

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

F. Zenhausen, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).
[CrossRef]

H.-U. Danzebrink, J. Microsc. 167, 276 (1994).
[CrossRef]

1993

D. R. Busath, R. C. Davis, C. C. Williams, Proc. SPIE 1855, 75 (1993).
[CrossRef]

K. Lieberman, A. Lewis, Appl. Phys. Lett. 62, 1335 (1993).
[CrossRef]

1992

E. Betzig, J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

1986

C. C. Williams, H. K. Wickramasinghe, Appl. Phys. Lett. 49, 1587 (1986).
[CrossRef]

Abstreiter, G.

G. Kolb, K. Karrai, G. Abstreiter, Appl. Phys. Lett. 65, 3090 (1994).
[CrossRef]

Betzig, E.

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, K. W. West, Science 264, 1740 (1994).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

Brus, L. E.

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

Busath, D. R.

D. R. Busath, R. C. Davis, C. C. Williams, Proc. SPIE 1855, 75 (1993).
[CrossRef]

D. R. Busath, “Near-field photodetection probe for near-field optical microscopy,” M. S. thesis (University of Utah, Salt Lake City, Utah, 1994).

Danzebrink, H. U.

H. U. Danzebrink, U. C. Fischer, in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 303–308.

Danzebrink, H.-U.

H.-U. Danzebrink, J. Microsc. 167, 276 (1994).
[CrossRef]

Davis, R. C.

R. C. Davis, C. C. Williams, P. Neuzil, Appl. Phys. Lett. 66, 2309 (1995).
[CrossRef]

D. R. Busath, R. C. Davis, C. C. Williams, Proc. SPIE 1855, 75 (1993).
[CrossRef]

Fischer, U. C.

H. U. Danzebrink, U. C. Fischer, in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 303–308.

Harris, T. D.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, K. W. West, Science 264, 1740 (1994).
[CrossRef] [PubMed]

Hess, H. F.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, K. W. West, Science 264, 1740 (1994).
[CrossRef] [PubMed]

Karrai, K.

G. Kolb, K. Karrai, G. Abstreiter, Appl. Phys. Lett. 65, 3090 (1994).
[CrossRef]

Kolb, G.

G. Kolb, K. Karrai, G. Abstreiter, Appl. Phys. Lett. 65, 3090 (1994).
[CrossRef]

Lewis, A.

K. Lieberman, A. Lewis, Appl. Phys. Lett. 62, 1335 (1993).
[CrossRef]

Lieberman, K.

K. Lieberman, A. Lewis, Appl. Phys. Lett. 62, 1335 (1993).
[CrossRef]

Macklin, J. J.

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

Neuzil, P.

R. C. Davis, C. C. Williams, P. Neuzil, Appl. Phys. Lett. 66, 2309 (1995).
[CrossRef]

O’Boyle, M. P.

F. Zenhausen, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).
[CrossRef]

Pfeiffer, L. N.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, K. W. West, Science 264, 1740 (1994).
[CrossRef] [PubMed]

Trautman, J. K.

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

E. Betzig, J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

West, K. W.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, K. W. West, Science 264, 1740 (1994).
[CrossRef] [PubMed]

Wickramasinghe, H. K.

F. Zenhausen, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).
[CrossRef]

C. C. Williams, H. K. Wickramasinghe, Appl. Phys. Lett. 49, 1587 (1986).
[CrossRef]

Williams, C. C.

R. C. Davis, C. C. Williams, P. Neuzil, Appl. Phys. Lett. 66, 2309 (1995).
[CrossRef]

D. R. Busath, R. C. Davis, C. C. Williams, Proc. SPIE 1855, 75 (1993).
[CrossRef]

C. C. Williams, H. K. Wickramasinghe, Appl. Phys. Lett. 49, 1587 (1986).
[CrossRef]

Zenhausen, F.

F. Zenhausen, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).
[CrossRef]

Appl. Phys. Lett.

F. Zenhausen, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).
[CrossRef]

R. C. Davis, C. C. Williams, P. Neuzil, Appl. Phys. Lett. 66, 2309 (1995).
[CrossRef]

G. Kolb, K. Karrai, G. Abstreiter, Appl. Phys. Lett. 65, 3090 (1994).
[CrossRef]

K. Lieberman, A. Lewis, Appl. Phys. Lett. 62, 1335 (1993).
[CrossRef]

C. C. Williams, H. K. Wickramasinghe, Appl. Phys. Lett. 49, 1587 (1986).
[CrossRef]

J. Microsc.

H.-U. Danzebrink, J. Microsc. 167, 276 (1994).
[CrossRef]

Nature

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

Proc. SPIE

D. R. Busath, R. C. Davis, C. C. Williams, Proc. SPIE 1855, 75 (1993).
[CrossRef]

Science

E. Betzig, J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, K. W. West, Science 264, 1740 (1994).
[CrossRef] [PubMed]

Other

H. U. Danzebrink, U. C. Fischer, in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 303–308.

D. R. Busath, “Near-field photodetection probe for near-field optical microscopy,” M. S. thesis (University of Utah, Salt Lake City, Utah, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the imaging system, in which non-contact AFM is used for height control. The imaged structure is created on a 2 mm × 150 μm × 50 μm glass cantilever that is dithered near its resonant frequency. This sample consists of submicrometer holes in a 40-nm aluminum film. The nanoprobe is mounted on a piezoelectric scanning tube. A cut-away schematic of the nanoprobe is shown at the bottom. It consists of a micromachined silicon pyramid with 100-nm silicon dioxide covering all but the last 2 μm. In addition, the structure is covered by an 80-nm aluminum film with a small (100–200-nm) opening in the film at the end of the tip.

Fig. 2
Fig. 2

Scanning-electron-microscopy images of the photodiode nanoprobe at two magnifications: (A) The entire probe structure and (B) an enlarged view of the diode structure. The enlarged view indicates that for this probe the opening in the aluminum is approximately 200 nm × 200 nm and defines the optically sensitive area of the probe.

Fig. 3
Fig. 3

3 μm × 3 μm images of an 800-nm hole in a 40-nm-thick aluminum film. The left image is an AFM topographic image; the image at the right shows the ac component of the optical signal. Below each image is a corresponding line scan cut through the middle of the hole.

Fig. 4
Fig. 4

1 μm × 1 μm images of several 200-nm holes in an aluminum film. The left image is a topographic image; the right image shows the dc component of the optical signal. Below each image is a vertical line cut as indicated in the image.

Fig. 5
Fig. 5

11 μm × 15 μm images near the edge of an aluminum film, showing interference patterns of the optical fields near a conducting surface. The region at the bottom of the images, below the aluminum edge, is transparent glass. The left image is topography; the right image is the ac optical signal at the modulation frequency and corresponds to the vertical derivative of the optical intensity.

Metrics