Abstract

Traditional optical flying-height testers use only the normal-incidence reflectivity of the interface between the read–write slider and a glass disk surrogate. We propose a tester that fully analyzes the complex amplitude reflectivity of the interface, including the polarization-dependent complex phase. The new approach is more accurate and repeatable and has no loss of precision at zero flying height. Further, the same instrument directly measures the complex index of refraction for the slider material in situ, obviating the need for a separate metrology step with an ellipsometer.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Stone, Commonwealth Eng. 1, 115 (1921).
  2. J. M. Fleischer, C. Lin, IBM J., Res. Dev. 18, 529 (1974).
    [CrossRef]
  3. G. L. Best, D. E. Home, A. Chiou, H. Sussner, IEEE Trans. Magn. MAG-22, 1017 (1986).
    [CrossRef]
  4. T. Ohkubo, J. Kishegami, Trans. ASME 110, 148 (1988).
    [CrossRef]
  5. D. A. Fridge, K. A. Miller, U.S. patent4,593,368 (June3, 1986).
  6. C. Lacey, J. A. Adams, E. W. Ross, A. Cormier, Proc. DiskCon ‘ 92 (1992), p. 27.
  7. R. Smythe, R. Moore, Proc. SPIE 429, 16 (1983).
  8. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1989), pp. 271–283.
  9. C. Lacey, R. Shelor, A. J. Cormier, R. E. Talke, IEEE Trans. Magn. 29, 3906 (1993).
    [CrossRef]

1993

C. Lacey, R. Shelor, A. J. Cormier, R. E. Talke, IEEE Trans. Magn. 29, 3906 (1993).
[CrossRef]

1992

C. Lacey, J. A. Adams, E. W. Ross, A. Cormier, Proc. DiskCon ‘ 92 (1992), p. 27.

1988

T. Ohkubo, J. Kishegami, Trans. ASME 110, 148 (1988).
[CrossRef]

1986

G. L. Best, D. E. Home, A. Chiou, H. Sussner, IEEE Trans. Magn. MAG-22, 1017 (1986).
[CrossRef]

1983

R. Smythe, R. Moore, Proc. SPIE 429, 16 (1983).

1974

J. M. Fleischer, C. Lin, IBM J., Res. Dev. 18, 529 (1974).
[CrossRef]

1921

W. Stone, Commonwealth Eng. 1, 115 (1921).

Adams, J. A.

C. Lacey, J. A. Adams, E. W. Ross, A. Cormier, Proc. DiskCon ‘ 92 (1992), p. 27.

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1989), pp. 271–283.

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1989), pp. 271–283.

Best, G. L.

G. L. Best, D. E. Home, A. Chiou, H. Sussner, IEEE Trans. Magn. MAG-22, 1017 (1986).
[CrossRef]

Chiou, A.

G. L. Best, D. E. Home, A. Chiou, H. Sussner, IEEE Trans. Magn. MAG-22, 1017 (1986).
[CrossRef]

Cormier, A.

C. Lacey, J. A. Adams, E. W. Ross, A. Cormier, Proc. DiskCon ‘ 92 (1992), p. 27.

Cormier, A. J.

C. Lacey, R. Shelor, A. J. Cormier, R. E. Talke, IEEE Trans. Magn. 29, 3906 (1993).
[CrossRef]

Fleischer, J. M.

J. M. Fleischer, C. Lin, IBM J., Res. Dev. 18, 529 (1974).
[CrossRef]

Fridge, D. A.

D. A. Fridge, K. A. Miller, U.S. patent4,593,368 (June3, 1986).

Home, D. E.

G. L. Best, D. E. Home, A. Chiou, H. Sussner, IEEE Trans. Magn. MAG-22, 1017 (1986).
[CrossRef]

Kishegami, J.

T. Ohkubo, J. Kishegami, Trans. ASME 110, 148 (1988).
[CrossRef]

Lacey, C.

C. Lacey, R. Shelor, A. J. Cormier, R. E. Talke, IEEE Trans. Magn. 29, 3906 (1993).
[CrossRef]

C. Lacey, J. A. Adams, E. W. Ross, A. Cormier, Proc. DiskCon ‘ 92 (1992), p. 27.

Lin, C.

J. M. Fleischer, C. Lin, IBM J., Res. Dev. 18, 529 (1974).
[CrossRef]

Miller, K. A.

D. A. Fridge, K. A. Miller, U.S. patent4,593,368 (June3, 1986).

Moore, R.

R. Smythe, R. Moore, Proc. SPIE 429, 16 (1983).

Ohkubo, T.

T. Ohkubo, J. Kishegami, Trans. ASME 110, 148 (1988).
[CrossRef]

Ross, E. W.

C. Lacey, J. A. Adams, E. W. Ross, A. Cormier, Proc. DiskCon ‘ 92 (1992), p. 27.

Shelor, R.

C. Lacey, R. Shelor, A. J. Cormier, R. E. Talke, IEEE Trans. Magn. 29, 3906 (1993).
[CrossRef]

Smythe, R.

R. Smythe, R. Moore, Proc. SPIE 429, 16 (1983).

Stone, W.

W. Stone, Commonwealth Eng. 1, 115 (1921).

Sussner, H.

G. L. Best, D. E. Home, A. Chiou, H. Sussner, IEEE Trans. Magn. MAG-22, 1017 (1986).
[CrossRef]

Talke, R. E.

C. Lacey, R. Shelor, A. J. Cormier, R. E. Talke, IEEE Trans. Magn. 29, 3906 (1993).
[CrossRef]

Commonwealth Eng.

W. Stone, Commonwealth Eng. 1, 115 (1921).

IBM J., Res. Dev.

J. M. Fleischer, C. Lin, IBM J., Res. Dev. 18, 529 (1974).
[CrossRef]

IEEE Trans. Magn.

G. L. Best, D. E. Home, A. Chiou, H. Sussner, IEEE Trans. Magn. MAG-22, 1017 (1986).
[CrossRef]

C. Lacey, R. Shelor, A. J. Cormier, R. E. Talke, IEEE Trans. Magn. 29, 3906 (1993).
[CrossRef]

Proc. DiskCon

C. Lacey, J. A. Adams, E. W. Ross, A. Cormier, Proc. DiskCon ‘ 92 (1992), p. 27.

Proc. SPIE

R. Smythe, R. Moore, Proc. SPIE 429, 16 (1983).

Trans. ASME

T. Ohkubo, J. Kishegami, Trans. ASME 110, 148 (1988).
[CrossRef]

Other

D. A. Fridge, K. A. Miller, U.S. patent4,593,368 (June3, 1986).

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1989), pp. 271–283.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Polarization interferometer for measuring the flying height of read–write sliders. The complex reflectivity of the slider–glass interface is a function of the height h. The homodyne receiver analyzes the relative phase between two orthogonal polarization components as well as the reflected beam intensity.

Fig. 2
Fig. 2

Reflected intensity as a function of flying height.

Fig. 3
Fig. 3

Difference in phase between the s- and p-polarization components as a function of flying height. The phase is changing rapidly at 0 nm and is therefore a good measure of flying height near contact.

Fig. 4
Fig. 4

Slider flying height as a function of spindle speed.

Fig. 5
Fig. 5

Lateral scan of the contact region between a silicon carbide sample wrung to a glass disk. The rms data scatter for a dwell time of 3 μs is 0.4 nm.

Tables (1)

Tables Icon

Table 1 In Situ Determination of the Complex Index of Silicon Carbide

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

z p ( β ) = r p + r p exp ( i β ) 1 + r p r p exp ( i β ) ,
z s ( β ) = r s + r s exp ( i β ) 1 + r s r s exp ( i β ) ,
β = 2 k h cos ( ϕ ) .
I ( β ) = I s ( β ) + I p ( β ) ,
I s ( β ) = z s ( β ) 2 ,             I p ( β ) = z p ( β ) 2 .
θ ( β ) = arg [ z s ( β ) ] - arg [ z p ( β ) ] .
χ 2 ( β ) = [ I exp - I ( β ) ] 2 + [ θ exp - θ ( β ) ] 2

Metrics