Abstract

We show that the coupling between amplitude and frequency fluctuations that is due to filter sliding significantly enhances timing jitter in soliton transmission controlled by in-line filters. This is the likely reason for the extra timing jitter observed in a recent soliton transmission experiment using sliding filters.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986).
    [CrossRef] [PubMed]
  2. A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991);J. Opt. Soc. Am. B 9, 1350 (1992).
    [CrossRef] [PubMed]
  3. Y. Kodama, A. Hasegawa, Opt. Lett. 17, 31 (1992).
    [CrossRef] [PubMed]
  4. L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
    [CrossRef] [PubMed]
  5. A. Mecozzi, Opt. Lett. 20, 1859 (1995).
    [CrossRef] [PubMed]
  6. L. F. Mollenauer, P. V. Mamyshev, M. J. Neubelt, Opt. Lett. 19, 704 (1994).
    [CrossRef] [PubMed]
  7. H. A. Haus, J. Opt. Soc. Am. B 8, 1122 (1991).
    [CrossRef]
  8. M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, F. Fontana, G. E. Town, J. Opt. Soc. Am. B 12, 72 (1995).
    [CrossRef]
  9. E. A. Golovchenko, A. N. Pilipetskii, C. R. Menyuk, J. P. Gordon, L. F. Mollenauer, Opt. Lett. 20, 539 (1995).
    [CrossRef] [PubMed]

1995

1994

1992

1991

1986

Evangelides, S. G.

Fontana, F.

Franco, P.

Golovchenko, E. A.

Gordon, J. P.

Hasegawa, A.

Haus, H. A.

Kodama, Y.

Lai, Y.

Mamyshev, P. V.

Mecozzi, A.

Menyuk, C. R.

Midrio, M.

Mollenauer, L. F.

Moores, J. D.

Neubelt, M. J.

Pilipetskii, A. N.

Romagnoli, M.

Town, G. E.

Wabnitz, S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Timing jitter versus propagation distance in soliton units. Dashed curve, theory with sliding filters; solid curve, theory with fixed filters. The circles and squares are the results of computer simulations with and without sliding, respectively.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

u z = i ( 1 2 2 u t 2 + u 2 u ) + 1 2 [ α - η ( i t - ω f z ) 2 ] u ,
d A d z = α A = η [ ( Ω - ω f z ) 2 + 1 3 A 2 ] A ,
d Ω d z = - 2 3 η ( Ω - ω f z ) A 2 .
d a d z = - 2 3 η a - 2 η Δ Ω δ + F a ( z ) ,
d δ d z = - 4 3 η Δ Ω α - 2 3 η δ + F δ ( z ) ,
d τ d z = δ + F τ ( z ) .
N a = Γ θ a f ,             N δ = 1 3 Γ θ a f ,             N τ = π 2 12 Γ θ a f ,
γ 1 = 2 3 η ( 1 - ω r ) ,             γ 2 = 2 3 η ( 1 + ω r ) ,
σ τ 2 = { a 0 + a 1 z + a 2 exp ( - γ 1 z ) + a 3 exp ( - γ 2 z ) + a 4 exp ( - 2 γ 1 z ) + a 5 exp ( - 2 γ 2 z ) + a 6 exp [ - ( γ 1 + γ 2 ) z ] } 3 Γ θ a f 4 η 2 + π 2 Γ θ a f z 12 ,
a 0 = - 3 ( 6 + 29 ω r 2 + ω r 4 ) 8 η ( 1 - ω r 2 ) 3 ,
a 1 = 1 + 2 ω r 2 ( 1 - ω r 2 ) 2 ,
a 2 = 3 ( 1 + 2 ω r ) 2 η ( 1 + ω r ) ( 1 - ω r ) 3 ,
a 3 = 3 ( 1 - 2 ω r ) 2 η ( 1 - ω r ) ( 1 + ω r ) 3 ,
a 4 = - 9 16 η ( 1 - ω r ) 3 ,
a 5 = - 9 16 η ( 1 + ω r ) 3 ,
a 6 = 3 8 η ( 1 - ω r 2 ) .

Metrics