Abstract

A normal mode analysis is applied to the investigation of the role of the superstrate in terms of its refractive index and thickness in estimating the performance of fiber refractometers and the tunability of fiber components based on evanescent coupling of a side-polished fiber to a multimode overlay waveguide. The model is shown to yield a complete transfer function and information about all the major characteristics of such in-line fiber devices. The results closely match the trends of the reported experiments.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Millar, M. Brierly, S. R. Mallinson, Opt. Lett. 12, 284 (1987).
    [CrossRef] [PubMed]
  2. W. Johnstone, in Trends in Fiber Optics and Optical Communications, A. K. Ghatak, B. Culshaw, V. Nagarajan, B. D. Khurana, eds. (Viva, New Delhi, 1995), Chap. 7.
  3. K. P. Panajotov, A. T. Andreev, J. Opt. Soc. Am. B 11, 826 (1994).
    [CrossRef]
  4. B. P. Pal, G. Raizada, R. K. Varshney, J. Opt. Commun. 16, 436 (1995).
  5. W. Johnstone, G. Thursby, D. Moodie, K. McCallion, Opt. Lett. 17, 1538 (1992).
    [CrossRef] [PubMed]
  6. D. Moodie, W. Johnstone, Opt. Lett. 18, 1025 (1993).
    [CrossRef] [PubMed]
  7. A. Sharma, J. Kompella, P. K. Mishra, J. Lightwave Technol. 8, 143 (1990).
    [CrossRef]
  8. A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. 5, 660 (1987).
    [CrossRef]
  9. A. Kumar, R. K. Varshney, S. Ghadirli, Int. J. Optoelectron. 8, 375 (1993).
  10. W. Johnstone, G. Fawcett, L. W. K. Yim, IEE Proc. Optoelectron. 141, 299 (1994).
    [CrossRef]
  11. W. Johnstone, University of Strathclyde, Glasgow G1 1XW, UK (personal communication).
  12. R. B. Charters, S. E. Staines, R. P. Tatam, Opt. Lett. 19, 2036 (1994).
    [CrossRef] [PubMed]

1995 (1)

B. P. Pal, G. Raizada, R. K. Varshney, J. Opt. Commun. 16, 436 (1995).

1994 (3)

1993 (2)

D. Moodie, W. Johnstone, Opt. Lett. 18, 1025 (1993).
[CrossRef] [PubMed]

A. Kumar, R. K. Varshney, S. Ghadirli, Int. J. Optoelectron. 8, 375 (1993).

1992 (1)

1990 (1)

A. Sharma, J. Kompella, P. K. Mishra, J. Lightwave Technol. 8, 143 (1990).
[CrossRef]

1987 (2)

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. 5, 660 (1987).
[CrossRef]

C. A. Millar, M. Brierly, S. R. Mallinson, Opt. Lett. 12, 284 (1987).
[CrossRef] [PubMed]

Andreev, A. T.

Brierly, M.

Charters, R. B.

Fawcett, G.

W. Johnstone, G. Fawcett, L. W. K. Yim, IEE Proc. Optoelectron. 141, 299 (1994).
[CrossRef]

Ghadirli, S.

A. Kumar, R. K. Varshney, S. Ghadirli, Int. J. Optoelectron. 8, 375 (1993).

Ghatak, A. K.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. 5, 660 (1987).
[CrossRef]

Johnstone, W.

W. Johnstone, G. Fawcett, L. W. K. Yim, IEE Proc. Optoelectron. 141, 299 (1994).
[CrossRef]

D. Moodie, W. Johnstone, Opt. Lett. 18, 1025 (1993).
[CrossRef] [PubMed]

W. Johnstone, G. Thursby, D. Moodie, K. McCallion, Opt. Lett. 17, 1538 (1992).
[CrossRef] [PubMed]

W. Johnstone, in Trends in Fiber Optics and Optical Communications, A. K. Ghatak, B. Culshaw, V. Nagarajan, B. D. Khurana, eds. (Viva, New Delhi, 1995), Chap. 7.

W. Johnstone, University of Strathclyde, Glasgow G1 1XW, UK (personal communication).

Kompella, J.

A. Sharma, J. Kompella, P. K. Mishra, J. Lightwave Technol. 8, 143 (1990).
[CrossRef]

Kumar, A.

A. Kumar, R. K. Varshney, S. Ghadirli, Int. J. Optoelectron. 8, 375 (1993).

Mallinson, S. R.

McCallion, K.

Millar, C. A.

Mishra, P. K.

A. Sharma, J. Kompella, P. K. Mishra, J. Lightwave Technol. 8, 143 (1990).
[CrossRef]

Moodie, D.

Pal, B. P.

B. P. Pal, G. Raizada, R. K. Varshney, J. Opt. Commun. 16, 436 (1995).

Panajotov, K. P.

Raizada, G.

B. P. Pal, G. Raizada, R. K. Varshney, J. Opt. Commun. 16, 436 (1995).

Sharma, A.

A. Sharma, J. Kompella, P. K. Mishra, J. Lightwave Technol. 8, 143 (1990).
[CrossRef]

Shenoy, M. R.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. 5, 660 (1987).
[CrossRef]

Staines, S. E.

Tatam, R. P.

Thursby, G.

Thyagarajan, K.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. 5, 660 (1987).
[CrossRef]

Varshney, R. K.

B. P. Pal, G. Raizada, R. K. Varshney, J. Opt. Commun. 16, 436 (1995).

A. Kumar, R. K. Varshney, S. Ghadirli, Int. J. Optoelectron. 8, 375 (1993).

Yim, L. W. K.

W. Johnstone, G. Fawcett, L. W. K. Yim, IEE Proc. Optoelectron. 141, 299 (1994).
[CrossRef]

IEE Proc. Optoelectron. (1)

W. Johnstone, G. Fawcett, L. W. K. Yim, IEE Proc. Optoelectron. 141, 299 (1994).
[CrossRef]

Int. J. Optoelectron. (1)

A. Kumar, R. K. Varshney, S. Ghadirli, Int. J. Optoelectron. 8, 375 (1993).

J. Lightwave Technol. (2)

A. Sharma, J. Kompella, P. K. Mishra, J. Lightwave Technol. 8, 143 (1990).
[CrossRef]

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. 5, 660 (1987).
[CrossRef]

J. Opt. Commun. (1)

B. P. Pal, G. Raizada, R. K. Varshney, J. Opt. Commun. 16, 436 (1995).

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Other (2)

W. Johnstone, in Trends in Fiber Optics and Optical Communications, A. K. Ghatak, B. Culshaw, V. Nagarajan, B. D. Khurana, eds. (Viva, New Delhi, 1995), Chap. 7.

W. Johnstone, University of Strathclyde, Glasgow G1 1XW, UK (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic showing the basic structure of a SPF evanescently coupled to a planar MMOW; the glue layer (dg,ng) between the fiber cladding and the MMOW, though optional, is often required for gluing a MMOW slab to the fiber half-block. (b) Schematic showing definitions of various device characteristics with respect to its transfer function Pf (λ) with ns or ds as the labeling parameter.

Fig. 2
Fig. 2

Shift in λr for TE and TM polarizations as a function of ns for a LiNbO3 overlay (dg = 1 μm, ng = ncl (of the equivalent planar waveguide) = 1.44638, s = 2 μm, and L = 4 mm); L is the interaction length, which is taken to be the coupling length between the two normal modes at a given wavelength.4

Fig. 3
Fig. 3

Shift in λr for TE and TM polarizations as a function of ds for a BK7 glass overlay with a CaF2 superstrate (s = 3 μm, L = 6.933 mm).

Fig. 4
Fig. 4

Pf (λ) for a BK7 glass overlay with the same parameters as in Fig. 3 for varying ds.

Tables (1)

Tables Icon

Table 1 Variation of Various Device Characteristics As a Function of the Superstrate Index (ns) for a SPF Loaded with a Polymer Overlay (for a Propagating TM Mode)

Metrics