Abstract

Wave mixing with a self-induced grating in a saturable absorber, which is inserted into a resonator, gives special filtering behavior. In a linear Fabry–Perot cavity with gain, the grating forms a self-matched, three-mirror laser cavity that can discriminate between modes whose frequency difference is much lower than the grating bandwidth. The effect was used to obtain single-mode lasers with narrow linewidths. The self-induced grating can dynamically adjust itself to small disturbances and changes in the cavity parameters.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Horowitz, R. Daisy, B. Fischer, J. ZyskindElectron. Lett. 30, 648 (1994).
    [CrossRef]
  2. M. Horowitz, R. Daisy, B. Fischer, J. ZyskindOpt. Lett. 19, 1406 (1994).
    [CrossRef] [PubMed]
  3. Y. Cheng, J. Kringlebotn, W. Loh, R. Laming, D. PayneOpt. Lett. 20, 875 (1995).
    [CrossRef] [PubMed]
  4. A. E. SiegmanLasers (University Science, Mill Valley, Calif., 1986), pp. 524–531.
  5. E. DesurvireJ. Lightwave Technol. 8, 1517 (1990).
    [CrossRef]
  6. G. P. Agrawal, M. LaxJ. Opt. Soc. Am. 71, 515 (1980).
    [CrossRef]

1995 (1)

1994 (2)

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindElectron. Lett. 30, 648 (1994).
[CrossRef]

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindOpt. Lett. 19, 1406 (1994).
[CrossRef] [PubMed]

1990 (1)

E. DesurvireJ. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

1980 (1)

Agrawal, G. P.

Cheng, Y.

Daisy, R.

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindOpt. Lett. 19, 1406 (1994).
[CrossRef] [PubMed]

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindElectron. Lett. 30, 648 (1994).
[CrossRef]

Desurvire, E.

E. DesurvireJ. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

Fischer, B.

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindElectron. Lett. 30, 648 (1994).
[CrossRef]

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindOpt. Lett. 19, 1406 (1994).
[CrossRef] [PubMed]

Horowitz, M.

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindOpt. Lett. 19, 1406 (1994).
[CrossRef] [PubMed]

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindElectron. Lett. 30, 648 (1994).
[CrossRef]

Kringlebotn, J.

Laming, R.

Lax, M.

Loh, W.

Payne, D.

Siegman, A. E.

A. E. SiegmanLasers (University Science, Mill Valley, Calif., 1986), pp. 524–531.

Zyskind, J.

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindOpt. Lett. 19, 1406 (1994).
[CrossRef] [PubMed]

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindElectron. Lett. 30, 648 (1994).
[CrossRef]

Electron. Lett. (1)

M. Horowitz, R. Daisy, B. Fischer, J. ZyskindElectron. Lett. 30, 648 (1994).
[CrossRef]

J. Lightwave Technol. (1)

E. DesurvireJ. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (2)

Other (1)

A. E. SiegmanLasers (University Science, Mill Valley, Calif., 1986), pp. 524–531.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Reflectivity of a probe wave from a grating that was induced in a saturable absorber (γ0lg = −1.5) with a mirror (r = 0.95) by strong coupled waves as a function of the phase difference Δkl1, where l1 is the distance between the mirror and the absorber. The length of the absorber (grating) is lg = l1/5, and the input intensity of the strong wave is four times stronger than the saturation intensity. The inset shows the saturable absorber–mirror system (SA is the saturable absorber, M is the mirror).

Fig. 2
Fig. 2

Transmissivity of a weak wave (through the cavity with the saturable absorber in which the self-induced grating was formed by the strong self-matched mode) as a function of phase Δkl (l is the total length of the cavity). The distances between the absorber and the mirrors are 1 and 9 m, the length of the saturable absorber is 0.2 m, and the intensity of the strong wave at the input of the absorber is four times stronger than the saturation intensity. The inset shows the two mirrors (M1, M2) and the saturable absorber cavity (SA).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dA ± 1 d z = γ 0 ( 1 + i Ω ) 2 ( a 2 b 2 ) 1 / 2 [ 1 a ( a 2 b 2 ) 1 / 2 2 | A ± 1 | 2 ] A ± 1 ,
d A ± 2 d z = γ 0 ( 1 + i Ω ) 2 ( a 2 b 2 ) 1 / 2 [ A ± 2 a ( a 2 b 2 ) 1 / 2 2 × A 2 A ± 1 A 1 exp ( 2 i Δ k z ± ϕ 21 ) ] ,

Metrics