Abstract

A Nd:YAG/KNbO3 composite-material microchip laser has generated blue radiation at 473 nm with output powers of 1 mW when diode laser pumped and 9 mW when Ti:sapphire laser pumped. The fundamental radiation generated by the quasi-three-level 4F3/24I9/2 transition in Nd:YAG at 946 nm was frequency doubled in KNbO3 angle cut to be type I critically phase matched at 45 °C. Despite the normally isotropic nature of Nd:YAG, the fundamental is emitted linearly polarized and orthogonal to the linearly polarized blue radiation.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. MacKinnon, B. D. Sinclair, Opt. Commun. 105, 183 (1994).
    [CrossRef]
  2. N. MacKinnon, B. D. Sinclair, in Conference on Lasers and Electro-Optics, Vol. 8 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CTuP2.
  3. G.J. Dixon, C. E. Tanner, C. E. Wieman, Opt. Lett. 14, 731 (1989).
    [CrossRef] [PubMed]
  4. J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
    [CrossRef]
  5. F. Hanson, Opt. Lett. 20, 148 (1995).
    [CrossRef] [PubMed]
  6. J. J. Zayhowski, Lincoln Lab. J. 3, 428 (1992).
  7. N. MacKinnon, B. D. Sinclair, Opt. Commun. 94, 281 (1992).
    [CrossRef]
  8. J. J. Zayhowski, in Advanced Solid-State Lasers, H. P. Jennssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), p. 9.
  9. J.-P. Meyn, G. Huber, Opt. Lett. 19, 1436 (1994).
    [CrossRef] [PubMed]
  10. J. J. Zayhowski, C. Dill, Opt. Lett. 19, 1427 (1994).
    [CrossRef] [PubMed]
  11. T. Baer, J. Opt. Soc. Am. B 3, 1175 (1986).
    [CrossRef]
  12. I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, B. Zysset, J. Opt. Soc. Am. B 9, 507 (1992).
    [CrossRef]

1995 (1)

1994 (3)

1992 (3)

J. J. Zayhowski, Lincoln Lab. J. 3, 428 (1992).

N. MacKinnon, B. D. Sinclair, Opt. Commun. 94, 281 (1992).
[CrossRef]

I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, B. Zysset, J. Opt. Soc. Am. B 9, 507 (1992).
[CrossRef]

1989 (1)

1987 (1)

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

1986 (1)

Baer, T.

Baumert, J. C.

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

Biaggio, I.

Bjorklund, G. C.

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

Dill, C.

Dixon, G.J.

Günter, P.

Hanson, F.

Huber, G.

Kerkoc, P.

Lenth, W.

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

MacKinnon, N.

N. MacKinnon, B. D. Sinclair, Opt. Commun. 105, 183 (1994).
[CrossRef]

N. MacKinnon, B. D. Sinclair, Opt. Commun. 94, 281 (1992).
[CrossRef]

N. MacKinnon, B. D. Sinclair, in Conference on Lasers and Electro-Optics, Vol. 8 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CTuP2.

Meyn, J.-P.

Risk, W. P.

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

Schellenberg, F. M.

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

Sinclair, B. D.

N. MacKinnon, B. D. Sinclair, Opt. Commun. 105, 183 (1994).
[CrossRef]

N. MacKinnon, B. D. Sinclair, Opt. Commun. 94, 281 (1992).
[CrossRef]

N. MacKinnon, B. D. Sinclair, in Conference on Lasers and Electro-Optics, Vol. 8 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CTuP2.

Tanner, C. E.

Wieman, C. E.

Wu, L.-S.

Zayhowski, J. J.

J. J. Zayhowski, C. Dill, Opt. Lett. 19, 1427 (1994).
[CrossRef] [PubMed]

J. J. Zayhowski, Lincoln Lab. J. 3, 428 (1992).

J. J. Zayhowski, in Advanced Solid-State Lasers, H. P. Jennssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), p. 9.

Zysset, B.

Appl. Phys. Lett. (1)

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

Lincoln Lab. J. (1)

J. J. Zayhowski, Lincoln Lab. J. 3, 428 (1992).

Opt. Commun. (2)

N. MacKinnon, B. D. Sinclair, Opt. Commun. 94, 281 (1992).
[CrossRef]

N. MacKinnon, B. D. Sinclair, Opt. Commun. 105, 183 (1994).
[CrossRef]

Opt. Lett. (4)

Other (2)

J. J. Zayhowski, in Advanced Solid-State Lasers, H. P. Jennssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), p. 9.

N. MacKinnon, B. D. Sinclair, in Conference on Lasers and Electro-Optics, Vol. 8 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CTuP2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Composite-cavity microchip pump scheme. The NdYAG/KNbO3 crystal set was coated on its external surfaces and mounted on a cooler assembly as shown.

Fig. 2
Fig. 2

Blue laser output power as a function of the crystal heat-sink temperature at maximum absorbed Ti:sapphire pump power Pabs = 279 mW. The inset shows 946-nm output power under the same operating conditions.

Fig. 3
Fig. 3

Ti:sapphire-pumped blue (filled circles, right y axis) and 946-nm (open squares, left y axis) laser output power as a function of pump power (Pinc, incident; Pabs, absorbed) at the crystal heat-sink temperature Tx that optimize the blue output at each pump power.

Fig. 4
Fig. 4

Diode-pumped blue (filled circles, right y axis) and 946-nm (open squares, left y axis) laser output power as a function of pump power (Pinc, incident; Pabs, absorbed) at the crystal setpoint temperature Tx = 26.9 °C that optimized the blue output at the maximum absorbed pump power Pabs = 647 mW.

Metrics