Abstract

We study a soliton transmission line with sliding-frequency filters, and we determine the limits on soliton stability imposed by the value of the free spectral range of Fabry–Perot étalon filters. From these limits, we infer the minimum channel spacing that is possible in a soliton wavelength-division-multiplexing system.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, S. G. Evangelides, J. P. Gordon, J. Lightwave Technol. 9, 362 (1991).
    [CrossRef]
  2. P. K. A. Wai, C. R. Menyuk, B. Raghavan, “Wavelength-division multiplexing in an unfiltered soliton communication system,” submitted toJ. Lightwave Technol.
  3. L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
    [CrossRef] [PubMed]
  4. P. V. Mamyshev, L. F. Mollenauer, Opt. Lett. 19, 2083 (1994).
    [CrossRef] [PubMed]
  5. Y. Kodama, S. Wabnitz, Opt. Lett. 19, 162 (1994).
    [CrossRef] [PubMed]
  6. E. A. Golovchenko, A. N. Pilipetskii, C. R. Menyuk, L. F. Mollenauer, J. P. Gordon, Opt. Lett. 17, 1575 (1995).

1995

1994

1992

1991

L. F. Mollenauer, S. G. Evangelides, J. P. Gordon, J. Lightwave Technol. 9, 362 (1991).
[CrossRef]

Evangelides, S. G.

L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

L. F. Mollenauer, S. G. Evangelides, J. P. Gordon, J. Lightwave Technol. 9, 362 (1991).
[CrossRef]

Golovchenko, E. A.

Gordon, J. P.

Kodama, Y.

Mamyshev, P. V.

Menyuk, C. R.

E. A. Golovchenko, A. N. Pilipetskii, C. R. Menyuk, L. F. Mollenauer, J. P. Gordon, Opt. Lett. 17, 1575 (1995).

P. K. A. Wai, C. R. Menyuk, B. Raghavan, “Wavelength-division multiplexing in an unfiltered soliton communication system,” submitted toJ. Lightwave Technol.

Mollenauer, L. F.

Pilipetskii, A. N.

Raghavan, B.

P. K. A. Wai, C. R. Menyuk, B. Raghavan, “Wavelength-division multiplexing in an unfiltered soliton communication system,” submitted toJ. Lightwave Technol.

Wabnitz, S.

Wai, P. K. A.

P. K. A. Wai, C. R. Menyuk, B. Raghavan, “Wavelength-division multiplexing in an unfiltered soliton communication system,” submitted toJ. Lightwave Technol.

J. Lightwave Technol.

L. F. Mollenauer, S. G. Evangelides, J. P. Gordon, J. Lightwave Technol. 9, 362 (1991).
[CrossRef]

Opt. Lett.

Other

P. K. A. Wai, C. R. Menyuk, B. Raghavan, “Wavelength-division multiplexing in an unfiltered soliton communication system,” submitted toJ. Lightwave Technol.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Soliton spectrum (solid curve) and the real part of the Fabry-Perot étalon filter Re [ f ˜ ( ω ) ] (dashed curves) for different free spectral ranges (FSR’s): FSR/Δω0 = 16, 7, and 3.5.

Fig. 2
Fig. 2

(a) Soliton peak amplitude A and (b) mean frequency offset from the filter frequency Δω as a function of distance z given in soliton periods z0, obtained through numerical solution of Eq. (2) for filters with curvature η2 = 0.1 and different free spectral ranges (FSR’s): FSR/Δω0 = 10 (solid curves), FSR/Δω0 = 6 (dashed curves), and FSR/Δω0 = 3.5 (dotted curves).

Fig. 3
Fig. 3

Absolute value of the soliton mean frequency offset from the filter peak frequency at equilibrium Δω as a function of the filter free spectral range for the filter curvatures η2 = 0.03 (circles), η2 = 0.1 (squares), and η2 = 0.3 (triangles).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u z i ω f τ u i 1 2 2 u τ 2 i | u | 2 u = α 2 + 0 f ( θ ) u ( τ θ , z ) d θ ,
f ˜ ( ω ) = z d l f ln 1 R 1 R exp [ i ( ω ω f ) 2 d / c τ 0 ] ,
η 2 = 1 2 R ( 1 R ) 2 8 π D l f c ( d λ ) 2 .
Δ ω = ω 0 ω f = 3 ω f / 4 η 2 A 2 ,
α = 2 η 2 3 A 2 + 2 η 2 ( Δ ω ) 2 ,

Metrics