Abstract

We demonstrate a spherical diffractive lens fabricated in fused quartz for use at the 632.8-nm wavelength. The lens is constructed by use of a modulated two-dimensional binary grating with a high transmitted zeroth-order efficiency. Rigorous eigenmode analysis is used to correlate the desired phase modulation with the fill factor. Fabrication requires only one lithography step. Using the lens, we were able to image a focal spot with a diffraction-limited spot size (FWHM).

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Kock, Bell Syst. Tech. J. 27, 58 (1948).
  2. W. Stork, N. Streibl, H. Haidner, P. Kipfer, Opt. Lett. 16, 1921 (1991).
    [CrossRef] [PubMed]
  3. M. W. Farn, Appl. Opt. 31, 4453 (1992).
    [CrossRef] [PubMed]
  4. F. T. Chen, H. G. Craighead, Opt. Lett. 20, 121 (1995).
    [CrossRef] [PubMed]
  5. P. Kipfer, M. Collischon, H. Haidner, J. Schwider, Proc. SPIE 2169, 100 (1994).
    [CrossRef]
  6. E. Noponen, J. Turunen, J. Opt. Soc. Am. A 11, 1097 (1994).
    [CrossRef]
  7. E. Noponen, J. Turunen, J. Opt. Soc. Am. A 11, 2494 (1994).
    [CrossRef]
  8. H. Dammann, Optik 31, 95 (1970).
  9. O. Joubert, G. S. Oehrlein, Y. Zhang, J. Vac. Sci. Technol. A 12, 658 (1994).
    [CrossRef]
  10. S. M. Shank, R. Soave, A. Then, G. W. Tasker, “Fabrication of high aspect-ratio substructures in silicon for microchannel plates,” J. Vac. Sci. Technol. B (to be published).
  11. S. M. Sze, VLSI Technology (McGraw-Hill, New York, 1983), p. 226.
  12. H. Watanabe, Y. Todokoro, J. Vac. Sci. Technol. B 11, 2669 (1993).
    [CrossRef]

1995

1994

E. Noponen, J. Turunen, J. Opt. Soc. Am. A 11, 1097 (1994).
[CrossRef]

E. Noponen, J. Turunen, J. Opt. Soc. Am. A 11, 2494 (1994).
[CrossRef]

P. Kipfer, M. Collischon, H. Haidner, J. Schwider, Proc. SPIE 2169, 100 (1994).
[CrossRef]

O. Joubert, G. S. Oehrlein, Y. Zhang, J. Vac. Sci. Technol. A 12, 658 (1994).
[CrossRef]

1993

H. Watanabe, Y. Todokoro, J. Vac. Sci. Technol. B 11, 2669 (1993).
[CrossRef]

1992

1991

1970

H. Dammann, Optik 31, 95 (1970).

1948

W. E. Kock, Bell Syst. Tech. J. 27, 58 (1948).

Chen, F. T.

Collischon, M.

P. Kipfer, M. Collischon, H. Haidner, J. Schwider, Proc. SPIE 2169, 100 (1994).
[CrossRef]

Craighead, H. G.

Dammann, H.

H. Dammann, Optik 31, 95 (1970).

Farn, M. W.

Haidner, H.

P. Kipfer, M. Collischon, H. Haidner, J. Schwider, Proc. SPIE 2169, 100 (1994).
[CrossRef]

W. Stork, N. Streibl, H. Haidner, P. Kipfer, Opt. Lett. 16, 1921 (1991).
[CrossRef] [PubMed]

Joubert, O.

O. Joubert, G. S. Oehrlein, Y. Zhang, J. Vac. Sci. Technol. A 12, 658 (1994).
[CrossRef]

Kipfer, P.

P. Kipfer, M. Collischon, H. Haidner, J. Schwider, Proc. SPIE 2169, 100 (1994).
[CrossRef]

W. Stork, N. Streibl, H. Haidner, P. Kipfer, Opt. Lett. 16, 1921 (1991).
[CrossRef] [PubMed]

Kock, W. E.

W. E. Kock, Bell Syst. Tech. J. 27, 58 (1948).

Noponen, E.

Oehrlein, G. S.

O. Joubert, G. S. Oehrlein, Y. Zhang, J. Vac. Sci. Technol. A 12, 658 (1994).
[CrossRef]

Schwider, J.

P. Kipfer, M. Collischon, H. Haidner, J. Schwider, Proc. SPIE 2169, 100 (1994).
[CrossRef]

Shank, S. M.

S. M. Shank, R. Soave, A. Then, G. W. Tasker, “Fabrication of high aspect-ratio substructures in silicon for microchannel plates,” J. Vac. Sci. Technol. B (to be published).

Soave, R.

S. M. Shank, R. Soave, A. Then, G. W. Tasker, “Fabrication of high aspect-ratio substructures in silicon for microchannel plates,” J. Vac. Sci. Technol. B (to be published).

Stork, W.

Streibl, N.

Sze, S. M.

S. M. Sze, VLSI Technology (McGraw-Hill, New York, 1983), p. 226.

Tasker, G. W.

S. M. Shank, R. Soave, A. Then, G. W. Tasker, “Fabrication of high aspect-ratio substructures in silicon for microchannel plates,” J. Vac. Sci. Technol. B (to be published).

Then, A.

S. M. Shank, R. Soave, A. Then, G. W. Tasker, “Fabrication of high aspect-ratio substructures in silicon for microchannel plates,” J. Vac. Sci. Technol. B (to be published).

Todokoro, Y.

H. Watanabe, Y. Todokoro, J. Vac. Sci. Technol. B 11, 2669 (1993).
[CrossRef]

Turunen, J.

Watanabe, H.

H. Watanabe, Y. Todokoro, J. Vac. Sci. Technol. B 11, 2669 (1993).
[CrossRef]

Zhang, Y.

O. Joubert, G. S. Oehrlein, Y. Zhang, J. Vac. Sci. Technol. A 12, 658 (1994).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

W. E. Kock, Bell Syst. Tech. J. 27, 58 (1948).

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. A

O. Joubert, G. S. Oehrlein, Y. Zhang, J. Vac. Sci. Technol. A 12, 658 (1994).
[CrossRef]

J. Vac. Sci. Technol. B

H. Watanabe, Y. Todokoro, J. Vac. Sci. Technol. B 11, 2669 (1993).
[CrossRef]

Opt. Lett.

Optik

H. Dammann, Optik 31, 95 (1970).

Proc. SPIE

P. Kipfer, M. Collischon, H. Haidner, J. Schwider, Proc. SPIE 2169, 100 (1994).
[CrossRef]

Other

S. M. Shank, R. Soave, A. Then, G. W. Tasker, “Fabrication of high aspect-ratio substructures in silicon for microchannel plates,” J. Vac. Sci. Technol. B (to be published).

S. M. Sze, VLSI Technology (McGraw-Hill, New York, 1983), p. 226.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Efficiency and phase of transmitted zeroth order for a 700-nm-period square pillar array as a function of pillar width. The pillar height is 1.032 μm, and the wavelength used is 0.6328 μm. Only the component polarized parallel to the normally incident light is shown.

Fig. 2
Fig. 2

Scanning electron micrograph of a diffractive lens. The lens aperture is a 1-mm square, and the focal length is 2 cm. (b) Scanning electron micrograph of a section of one Fresnel zone, showing the four phase levels.

Fig. 3
Fig. 3

Focal spot profile as measured by a CCD camera.

Metrics