Abstract

The effect of phase noise caused by thermal fluctuations in optical fiber is observed experimentally in a dynamically biased open-loop fiber-optic gyro. When source noise subtraction is used, thermal noise effects are readily observable. Total noise levels are in good agreement with theory. Contributions from shot, thermal, and electronic noise to the random walk coefficient are calculated, and the total is compared with experiment.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Wanser, Electron. Lett. 28, 53 (1992).
    [CrossRef]
  2. V. N. Logozinskii, Sov. J. Quantum Electron. 11, 536 (1981);in Fiber Optic Gyroscopes, R. B. Smith, ed., Vol. MS8 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1989), p. 296.
  3. K. Krakenes, K. Blotekjaer, J. Lightwave Technol. 13, 682 (1995).
    [CrossRef]
  4. S. Knudsen, A. B. Tveten, A. Dandridge, IEEE Photon. Technol. Lett. 7, 90 (1995).
    [CrossRef]
  5. S. Knudsen, K. Blotekjaer, Opt. Lett. 20, 1432 (1995).
    [CrossRef] [PubMed]
  6. R. P. Moeller, W. K. Burns, N. J. Frigo, J. Lightwave Technol. 7, 262 (2989).
    [CrossRef]
  7. R. P. Moeller, W. K. Burns, Opt. Lett. 16, 1902 (1991).
    [CrossRef] [PubMed]
  8. W. K. Burns, R. P. Moeller, E. Snitzer, G. Puc, in Digest of Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1992), paper W2.5, p. 42.
  9. W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
    [CrossRef]
  10. W. G. Driscol, ed., Handbook of Optics (McGraw-Hill, New York, 1978), p. 7-68;D. E. Gray, ed., AIP Handbook (McGraw-Hill, New York, 1972), p. 6-29.
  11. W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, Electron. Lett. 12, 546 (1976).
    [CrossRef]
  12. H. A. Haus, K. Bergman, Y. Lai, J. Opt. Soc. Am. B 8, 1952 (1991).
    [CrossRef]

2989 (1)

R. P. Moeller, W. K. Burns, N. J. Frigo, J. Lightwave Technol. 7, 262 (2989).
[CrossRef]

1995 (3)

K. Krakenes, K. Blotekjaer, J. Lightwave Technol. 13, 682 (1995).
[CrossRef]

S. Knudsen, A. B. Tveten, A. Dandridge, IEEE Photon. Technol. Lett. 7, 90 (1995).
[CrossRef]

S. Knudsen, K. Blotekjaer, Opt. Lett. 20, 1432 (1995).
[CrossRef] [PubMed]

1992 (1)

K. H. Wanser, Electron. Lett. 28, 53 (1992).
[CrossRef]

1991 (2)

1990 (1)

W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
[CrossRef]

1981 (1)

V. N. Logozinskii, Sov. J. Quantum Electron. 11, 536 (1981);in Fiber Optic Gyroscopes, R. B. Smith, ed., Vol. MS8 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1989), p. 296.

1976 (1)

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, Electron. Lett. 12, 546 (1976).
[CrossRef]

Bergman, K.

Blotekjaer, K.

S. Knudsen, K. Blotekjaer, Opt. Lett. 20, 1432 (1995).
[CrossRef] [PubMed]

K. Krakenes, K. Blotekjaer, J. Lightwave Technol. 13, 682 (1995).
[CrossRef]

Burns, W. K.

R. P. Moeller, W. K. Burns, N. J. Frigo, J. Lightwave Technol. 7, 262 (2989).
[CrossRef]

R. P. Moeller, W. K. Burns, Opt. Lett. 16, 1902 (1991).
[CrossRef] [PubMed]

W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
[CrossRef]

W. K. Burns, R. P. Moeller, E. Snitzer, G. Puc, in Digest of Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1992), paper W2.5, p. 42.

Dandridge, A.

S. Knudsen, A. B. Tveten, A. Dandridge, IEEE Photon. Technol. Lett. 7, 90 (1995).
[CrossRef]

W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
[CrossRef]

Dyott, R. B.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, Electron. Lett. 12, 546 (1976).
[CrossRef]

Frigo, N. J.

R. P. Moeller, W. K. Burns, N. J. Frigo, J. Lightwave Technol. 7, 262 (2989).
[CrossRef]

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, Electron. Lett. 12, 546 (1976).
[CrossRef]

Haus, H. A.

Knudsen, S.

S. Knudsen, K. Blotekjaer, Opt. Lett. 20, 1432 (1995).
[CrossRef] [PubMed]

S. Knudsen, A. B. Tveten, A. Dandridge, IEEE Photon. Technol. Lett. 7, 90 (1995).
[CrossRef]

Krakenes, K.

K. Krakenes, K. Blotekjaer, J. Lightwave Technol. 13, 682 (1995).
[CrossRef]

Lai, Y.

Logozinskii, V. N.

V. N. Logozinskii, Sov. J. Quantum Electron. 11, 536 (1981);in Fiber Optic Gyroscopes, R. B. Smith, ed., Vol. MS8 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1989), p. 296.

Matsumura, H.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, Electron. Lett. 12, 546 (1976).
[CrossRef]

Moeller, R. P.

R. P. Moeller, W. K. Burns, N. J. Frigo, J. Lightwave Technol. 7, 262 (2989).
[CrossRef]

R. P. Moeller, W. K. Burns, Opt. Lett. 16, 1902 (1991).
[CrossRef] [PubMed]

W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
[CrossRef]

W. K. Burns, R. P. Moeller, E. Snitzer, G. Puc, in Digest of Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1992), paper W2.5, p. 42.

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, Electron. Lett. 12, 546 (1976).
[CrossRef]

Puc, G.

W. K. Burns, R. P. Moeller, E. Snitzer, G. Puc, in Digest of Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1992), paper W2.5, p. 42.

Snitzer, E.

W. K. Burns, R. P. Moeller, E. Snitzer, G. Puc, in Digest of Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1992), paper W2.5, p. 42.

Tveten, A. B.

S. Knudsen, A. B. Tveten, A. Dandridge, IEEE Photon. Technol. Lett. 7, 90 (1995).
[CrossRef]

Wanser, K. H.

K. H. Wanser, Electron. Lett. 28, 53 (1992).
[CrossRef]

Electron. Lett. (2)

K. H. Wanser, Electron. Lett. 28, 53 (1992).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, Electron. Lett. 12, 546 (1976).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Knudsen, A. B. Tveten, A. Dandridge, IEEE Photon. Technol. Lett. 7, 90 (1995).
[CrossRef]

W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
[CrossRef]

J. Lightwave Technol. (2)

K. Krakenes, K. Blotekjaer, J. Lightwave Technol. 13, 682 (1995).
[CrossRef]

R. P. Moeller, W. K. Burns, N. J. Frigo, J. Lightwave Technol. 7, 262 (2989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Sov. J. Quantum Electron. (1)

V. N. Logozinskii, Sov. J. Quantum Electron. 11, 536 (1981);in Fiber Optic Gyroscopes, R. B. Smith, ed., Vol. MS8 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1989), p. 296.

Other (2)

W. K. Burns, R. P. Moeller, E. Snitzer, G. Puc, in Digest of Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1992), paper W2.5, p. 42.

W. G. Driscol, ed., Handbook of Optics (McGraw-Hill, New York, 1978), p. 7-68;D. E. Gray, ed., AIP Handbook (McGraw-Hill, New York, 1972), p. 6-29.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectrum analyzer output with a 1.0-km coil: Earth’s rate signal without noise subtraction (curve a), signal with noise subtraction (curve b), and electronic noise floor (curve c).

Fig. 2
Fig. 2

Calculated noise voltages at the spectrum analyzer in a 3-kHz bandwidth for (a) the 1.0-km coil and (b) the 2.86-km coil. Electronic noise levels are measured.

Fig. 3
Fig. 3

Calculated (dashed curves) and experimental (solid curves) total noise voltages at the spectrum analyzer in a 3-kHz bandwidth for (a) the 1.0-km coil and (b) the 2.86-km coil.

Tables (1)

Tables Icon

Table 1 Contributions to the Random Walk Coefficienta

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 0 = 1 2 I i [ 1 + cos ( 2 ϕ S + Δ ϕ N + ϕ m cos ω m t ) ] ,
| I 0 N ( ω ) | = I i 2 4 π B S ,
S = n = 0 J 2 n + 1 2 ( ϕ m ) × { Δ ϕ N , rms 2 [ ω + ( 2 n + 1 ) ω m ] + Δ ϕ N , rms 2 [ ω ( 2 n + 1 ) ω m ] } ,
Δ ϕ N , rms 2 ( ω ) = k B T 2 L κ λ 2 ( d n eff d T + n eff α L ) 2 × ln [ ( 2 W 0 ) 4 + ( ω D ) 2 ( 4 . 81 d ) 4 + ( ω D ) 2 ] × [ 1 sin c ( ω L v ) ] .
i N ( ω ) = r P 1 + J o 4 π B S .
Ω rms ( ω ) = λ c 4 π R L 1 J 1 2 π B S ,

Metrics