Abstract

We demonstrate a simple, novel technique for measurement of the Raman gain spectrum in optical fibers. We measure the stimulated Raman scattered power generated by a square pulse as a function of its pulse width. Because of fiber dispersion, increasing the pulse width increases the interaction length of the pump and Stokes pulses and leads to a higher Stokes power. The dependence of growth rate of Stokes power on pulse width gives the Raman gain coefficient. Our technique does not require calibration against a standard or absolute measurement of the Stokes signal. We show that gain values obtained with this technique agree well with direct pump-probe measurements.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Stentz, S. G. Grubb, C. E. Headley, J. R. Simpson, T. Strasser, N. Park, in Optical Fiber Communications, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 16.
  2. R. H. Stolen, E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
    [CrossRef]
  3. F. L. Galeener, J. C. Mikkelsen, R. H. Geils, W. J. Mosby, Appl. Phys. Lett. 32, 34 (1978).
    [CrossRef]
  4. R. W. Hellwarth, J. Cherlow, T. T. Yang, Phys. Rev. B 11, 964 (1975).
    [CrossRef]
  5. E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).

1990 (1)

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).

1978 (1)

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, W. J. Mosby, Appl. Phys. Lett. 32, 34 (1978).
[CrossRef]

1975 (1)

R. W. Hellwarth, J. Cherlow, T. T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

1973 (1)

R. H. Stolen, E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

Cherlow, J.

R. W. Hellwarth, J. Cherlow, T. T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Dianov, E. M.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).

Galeener, F. L.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, W. J. Mosby, Appl. Phys. Lett. 32, 34 (1978).
[CrossRef]

Geils, R. H.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, W. J. Mosby, Appl. Phys. Lett. 32, 34 (1978).
[CrossRef]

Golovchenko, E.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).

Grubb, S. G.

A. J. Stentz, S. G. Grubb, C. E. Headley, J. R. Simpson, T. Strasser, N. Park, in Optical Fiber Communications, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 16.

Headley, C. E.

A. J. Stentz, S. G. Grubb, C. E. Headley, J. R. Simpson, T. Strasser, N. Park, in Optical Fiber Communications, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 16.

Hellwarth, R. W.

R. W. Hellwarth, J. Cherlow, T. T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Ippen, E. P.

R. H. Stolen, E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

Mamyshev, P. V.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).

Mikkelsen, J. C.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, W. J. Mosby, Appl. Phys. Lett. 32, 34 (1978).
[CrossRef]

Mosby, W. J.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, W. J. Mosby, Appl. Phys. Lett. 32, 34 (1978).
[CrossRef]

Park, N.

A. J. Stentz, S. G. Grubb, C. E. Headley, J. R. Simpson, T. Strasser, N. Park, in Optical Fiber Communications, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 16.

Pilipetskii, A. N.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).

Simpson, J. R.

A. J. Stentz, S. G. Grubb, C. E. Headley, J. R. Simpson, T. Strasser, N. Park, in Optical Fiber Communications, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 16.

Stentz, A. J.

A. J. Stentz, S. G. Grubb, C. E. Headley, J. R. Simpson, T. Strasser, N. Park, in Optical Fiber Communications, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 16.

Stolen, R. H.

R. H. Stolen, E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

Strasser, T.

A. J. Stentz, S. G. Grubb, C. E. Headley, J. R. Simpson, T. Strasser, N. Park, in Optical Fiber Communications, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 16.

Yang, T. T.

R. W. Hellwarth, J. Cherlow, T. T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Appl. Phys. Lett. (2)

R. H. Stolen, E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, W. J. Mosby, Appl. Phys. Lett. 32, 34 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).

Phys. Rev. B (1)

R. W. Hellwarth, J. Cherlow, T. T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Other (1)

A. J. Stentz, S. G. Grubb, C. E. Headley, J. R. Simpson, T. Strasser, N. Park, in Optical Fiber Communications, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for measurement of Raman gain spectrum in optical fibers.

Fig. 2
Fig. 2

Stimulated Raman scattering signal from a 10.1-km standard single-mode fiber for decreasing pump pulse widths. The pulse widths corresponding to the spectra from top to bottom are 98, 33, 22, 18, 15, 13, 11, 8.3, 6.2, 4.0, and 1.0 ns.

Fig. 3
Fig. 3

Average Stokes power at the peak of the Raman gain spectrum as a function of pump pulse width. The solid curve is a best fit to Eqs. (2) with the Raman gain coefficient and Δβ′ as free parameters.

Fig. 4
Fig. 4

Raman gain spectrum in 10.1 km of standard single-mode fiber measured with our pulse-scan technique. The filled circles with the error bars are measured directly in a fiber Raman amplifier made of the same fiber. The pump is at 1550 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I s ( z , t ) z = g R I S ( z , t ) I p ( z , t - z Δ β ) + σ eff I p ( z , t - z Δ β ) ,
P s short pulse = P s 0 r { ( 2 + P 0 g s L ) [ exp ( P 0 g s L w ) - 1 ] P 0 g s L w - [ exp ( P 0 g s L w ) + 1 ] }             for  L w L , P s long pulse = P s 0 r { ( 2 + P 0 g s L w ) [ exp ( P 0 g s L ) - 1 ] P 0 g s L w - L L w [ exp ( P 0 g s L ) + 1 ] }             for  L w L .

Metrics