Abstract

We demonstrate the impulse-equivalent approach [Opt. Lett. 21, 833 (1996)] to time-domain storage of optical data. Using the 128-bit real Huffman–Ackroyd code as the write–read sequences, we have successfully stored a 42-μs-long stream containing 420 bits of data in a 40-MHz spectral channel in a Eu3+:Y2SiO5 crystal. The stored data were repeatedly recalled as many as eight times with high signal fidelity, showing no measurable sidelobe-induced noise. Data retrieval with the use of mismatched write–read pulses was also examined, and implications of the results for data encryption are discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Szabo, U.S. patent3,8946,420 (July22, 1975).
  2. G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).
  3. W. E. Moerner, J. Mol. Electron. 1, 55 (1985).
  4. B. Kohler, S. Bernet, A. Renn, U. P. Wild, Opt. Lett. 18, 2144 (1993).
    [CrossRef] [PubMed]
  5. T. W. Mossberg, Opt. Lett. 7, 77 (1982).
    [CrossRef] [PubMed]
  6. N. W. Carlson, Y. S. Bai, W. R. Babbit, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984).
    [CrossRef]
  7. Y. S. Bai, R. Kachru, Opt. Lett. 18, 1189 (1993).
    [CrossRef] [PubMed]
  8. M. Mitsunaga, R. Yano, N. Uesugi, Opt. Lett. 16, 1890 (1991).
  9. T. W. Mossberg, Opt. Lett. 17, 535 (1992); H. Lin, T. Wang, G. A. Wilson, T. W. Mossberg, Opt. Lett. 20, 91 (1995).
    [CrossRef] [PubMed]
  10. Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986).
    [CrossRef] [PubMed]
  11. X. A. Shen, R. Hartman, R. Kachru, Opt. Lett. 21, 833 (1996).
    [CrossRef] [PubMed]
  12. D. A. Huffman, IRE Trans. Inf. Theory 8, S10 (1962).
    [CrossRef]
  13. R. W. Equall, T. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
    [CrossRef] [PubMed]
  14. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  15. M. H. Ackroyd, IEEE Trans. Aerosp. Electron. Syst. 8, 2 (1972).
    [CrossRef]
  16. G. V. Jacoby, R. Kostt, IEEE Trans. Magn. MAG-20, 709 (1984).
    [CrossRef]
  17. X. A. Shen, E. Chiang, R. Kachru, Opt. Lett. 19, 1246 (1994).
    [CrossRef] [PubMed]

1996 (1)

1994 (2)

X. A. Shen, E. Chiang, R. Kachru, Opt. Lett. 19, 1246 (1994).
[CrossRef] [PubMed]

R. W. Equall, T. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

1993 (2)

1992 (1)

1991 (1)

1986 (1)

1985 (1)

W. E. Moerner, J. Mol. Electron. 1, 55 (1985).

1984 (2)

N. W. Carlson, Y. S. Bai, W. R. Babbit, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984).
[CrossRef]

G. V. Jacoby, R. Kostt, IEEE Trans. Magn. MAG-20, 709 (1984).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1982 (1)

1972 (1)

M. H. Ackroyd, IEEE Trans. Aerosp. Electron. Syst. 8, 2 (1972).
[CrossRef]

1962 (1)

D. A. Huffman, IRE Trans. Inf. Theory 8, S10 (1962).
[CrossRef]

Ackroyd, M. H.

M. H. Ackroyd, IEEE Trans. Aerosp. Electron. Syst. 8, 2 (1972).
[CrossRef]

Babbit, W. R.

N. W. Carlson, Y. S. Bai, W. R. Babbit, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984).
[CrossRef]

Babbitt, W. R.

Bai, Y. S.

Bernet, S.

Carlson, N. W.

N. W. Carlson, Y. S. Bai, W. R. Babbit, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984).
[CrossRef]

Castro, G.

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).

Chiang, E.

Cone, R. L.

R. W. Equall, T. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Equall, R. W.

R. W. Equall, T. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Haarer, D.

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hartman, R.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Huffman, D. A.

D. A. Huffman, IRE Trans. Inf. Theory 8, S10 (1962).
[CrossRef]

Jacoby, G. V.

G. V. Jacoby, R. Kostt, IEEE Trans. Magn. MAG-20, 709 (1984).
[CrossRef]

Kachru, R.

Kohler, B.

Kostt, R.

G. V. Jacoby, R. Kostt, IEEE Trans. Magn. MAG-20, 709 (1984).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Macfarlane, R. M.

R. W. Equall, T. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).

Mitsunaga, M.

Moerner, W. E.

W. E. Moerner, J. Mol. Electron. 1, 55 (1985).

Mossberg, T. W.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Renn, A.

Shen, X. A.

Sun, T.

R. W. Equall, T. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Szabo, A.

A. Szabo, U.S. patent3,8946,420 (July22, 1975).

Trommsdorff, H. P.

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).

Uesugi, N.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Wild, U. P.

Yano, R.

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

M. H. Ackroyd, IEEE Trans. Aerosp. Electron. Syst. 8, 2 (1972).
[CrossRef]

IEEE Trans. Magn. (1)

G. V. Jacoby, R. Kostt, IEEE Trans. Magn. MAG-20, 709 (1984).
[CrossRef]

IRE Trans. Inf. Theory (1)

D. A. Huffman, IRE Trans. Inf. Theory 8, S10 (1962).
[CrossRef]

J. Mol. Electron. (1)

W. E. Moerner, J. Mol. Electron. 1, 55 (1985).

Opt. Lett. (8)

Phys. Rev. A (1)

N. W. Carlson, Y. S. Bai, W. R. Babbit, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

R. W. Equall, T. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Other (2)

A. Szabo, U.S. patent3,8946,420 (July22, 1975).

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup for demonstrating IETDOM. PWS, polynomial waveform synthesizer.

Fig. 2
Fig. 2

128-bit real Huffman–Ackroyd code. (a) Calculated amplitude envelope. (b) Calculated power envelope. (c) Optical signal from AOM1 detected by a photodiode. The arrows in (a) mark the data bits that were later modified in the demonstration of data encryption.

Fig. 3
Fig. 3

(a) Detected echo and input pulses in an experiment demonstrating short-term storage of 420 bits of data in IETDOM. The inset shows the calculated biphase modulation for the first 15 on bits of the input. The relative intensity of each pulse here does not reflect the actual intensities used in the experiment. (b) First 16 μs of the input plotted on an expanded time scale for clarity. (c) First 16 μs of the retrieved data obtained in (a). (d) The same part of the data obtained after it was repeatedly recalled eight times over a time period of 3 min. (e) Retrieval using mismatched write–read pulses (see text). The arrow indicates an unresolvable on bit. (f ) Calculated waveform corresponding to (e). The experimental results in ( b), (c), and (e) are plotted on an identical intensity scale, and the results in (d) are plotted on an expanded scale.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E E ( t ) { E R E W } * E D ,

Metrics