Abstract

Novel liquid-crystal devices are described that generate linearly polarized light with axial symmetry; the beam propagation axis is the symmetry axis. Such light fields can be characterized by a polarization order number P. For example, P = 1 fields represent radially or azimuthally polarized light. The reorientation of the polarization orientation in these polarization converters is due to the twisted nematic effect and the effect of λ/2 wave plates. A single polarization converter can generate fields of orders 1 and 2. It is shown that one can in principle generate fields of any integral order P by cascading such elements. Devices that generate P = 1 fields are achromatic and can be used as polarization axis finders or as versatile tools for studying birefringent or polarizing materials.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E.g., Oriel Corporation, Stratford, Conn., part number 25325.
  2. D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
    [CrossRef]
  3. S. C. Tidwell, D. H. Ford, W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  4. E. G. Churin, J. Hossfeld, T. Tschudi, Opt. Commun. 99, 13 (1993).
    [CrossRef]
  5. R. Yamaguchi, T. Nose, S. Sato, Jpn. J. Appl. Phys. 28, 1730 (1989).
    [CrossRef]
  6. E. Collett, Polarized Light (Dekker, New York, 1993).
  7. M. Schadt, W. Helfrich, Appl. Phys. Lett. 18, 127 (1971).
    [CrossRef]
  8. C. H. Gooch, H. A. Tarry, J. Phys. D8, 1575 (1975).
    [CrossRef]
  9. The emerging polarization fields are not purely radially or azimuthally polarized light. The fields are described by ϕrad(θ) = θ modulo π and ϕazi(θ) = θ + π/2 modulo π. But this difference cannot be distinguished with the experiments presented here. In a further publication to be submitted to Opt. Lett. we will show how to overcome this modulo π problem.
  10. M. Stalder, M. Schadt, Mol. Cryst. Liq. Cryst. 282, 343 (1996).
    [CrossRef]

1996 (1)

M. Stalder, M. Schadt, Mol. Cryst. Liq. Cryst. 282, 343 (1996).
[CrossRef]

1993 (1)

E. G. Churin, J. Hossfeld, T. Tschudi, Opt. Commun. 99, 13 (1993).
[CrossRef]

1990 (1)

1989 (1)

R. Yamaguchi, T. Nose, S. Sato, Jpn. J. Appl. Phys. 28, 1730 (1989).
[CrossRef]

1972 (1)

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

1971 (1)

M. Schadt, W. Helfrich, Appl. Phys. Lett. 18, 127 (1971).
[CrossRef]

Churin, E. G.

E. G. Churin, J. Hossfeld, T. Tschudi, Opt. Commun. 99, 13 (1993).
[CrossRef]

Collett, E.

E. Collett, Polarized Light (Dekker, New York, 1993).

Ford, D. H.

Gooch, C. H.

C. H. Gooch, H. A. Tarry, J. Phys. D8, 1575 (1975).
[CrossRef]

Helfrich, W.

M. Schadt, W. Helfrich, Appl. Phys. Lett. 18, 127 (1971).
[CrossRef]

Hossfeld, J.

E. G. Churin, J. Hossfeld, T. Tschudi, Opt. Commun. 99, 13 (1993).
[CrossRef]

Kimura, W. D.

Nose, T.

R. Yamaguchi, T. Nose, S. Sato, Jpn. J. Appl. Phys. 28, 1730 (1989).
[CrossRef]

Pohl, D.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Sato, S.

R. Yamaguchi, T. Nose, S. Sato, Jpn. J. Appl. Phys. 28, 1730 (1989).
[CrossRef]

Schadt, M.

M. Stalder, M. Schadt, Mol. Cryst. Liq. Cryst. 282, 343 (1996).
[CrossRef]

M. Schadt, W. Helfrich, Appl. Phys. Lett. 18, 127 (1971).
[CrossRef]

Stalder, M.

M. Stalder, M. Schadt, Mol. Cryst. Liq. Cryst. 282, 343 (1996).
[CrossRef]

Tarry, H. A.

C. H. Gooch, H. A. Tarry, J. Phys. D8, 1575 (1975).
[CrossRef]

Tidwell, S. C.

Tschudi, T.

E. G. Churin, J. Hossfeld, T. Tschudi, Opt. Commun. 99, 13 (1993).
[CrossRef]

Yamaguchi, R.

R. Yamaguchi, T. Nose, S. Sato, Jpn. J. Appl. Phys. 28, 1730 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

M. Schadt, W. Helfrich, Appl. Phys. Lett. 18, 127 (1971).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. Yamaguchi, T. Nose, S. Sato, Jpn. J. Appl. Phys. 28, 1730 (1989).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

M. Stalder, M. Schadt, Mol. Cryst. Liq. Cryst. 282, 343 (1996).
[CrossRef]

Opt. Commun. (1)

E. G. Churin, J. Hossfeld, T. Tschudi, Opt. Commun. 99, 13 (1993).
[CrossRef]

Other (4)

E.g., Oriel Corporation, Stratford, Conn., part number 25325.

E. Collett, Polarized Light (Dekker, New York, 1993).

C. H. Gooch, H. A. Tarry, J. Phys. D8, 1575 (1975).
[CrossRef]

The emerging polarization fields are not purely radially or azimuthally polarized light. The fields are described by ϕrad(θ) = θ modulo π and ϕazi(θ) = θ + π/2 modulo π. But this difference cannot be distinguished with the experiments presented here. In a further publication to be submitted to Opt. Lett. we will show how to overcome this modulo π problem.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Alignment layers of the θ cell (left) and the resulting orientation of the LC molecules in the cell seen from above (right).

Fig. 2
Fig. 2

Generation of radially and azimuthually polarized light by use of a θ cell.

Fig. 3
Fig. 3

Polarized light of orders P = 1, 2, 3 ( left to right) analyzed with a linear polarizer.

Fig. 4
Fig. 4

Alignment layers for the LC device representing a rotationally symmetric λ/2 wave plate ( left). The rotationally symmetric λ/2 wave plate generating a P = 2 field is shown by gray arrows (right); the black boxes represent the LC λ/2 wave plates, the curves outline the fast axis, and the black arrows indicate the incoming linearly polarized light.

Tables (1)

Tables Icon

Tables 1 Examples of Linearly Polarized with Axial Symmetry

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( θ ) = P θ + ϕ 0 .
J p ( θ ) = [ cos ( P · θ + ϕ 0 ) sin ( P · θ + ϕ 0 ) ] .
θ D = ( α - ϕ 0 P ) + π P ( k + 1 2 ) ,
[ cos ( 2 θ ) sin ( 2 θ ) sin ( 2 θ ) - cos ( 2 θ ) ] [ cos ( ϕ in ) sin ( ϕ in ) ] = [ cos ( 2 θ - ϕ in ) sin ( 2 θ - ϕ in ) ] .
[ cos ( 2 θ ) sin ( 2 θ ) sin ( 2 θ ) - cos ( 2 θ ) ] [ 1 0 0 - 1 ] [ cos ( P θ ) sin ( P θ ) ] = [ cos [ ( P + 2 ) θ ] sin [ ( P + 2 ) θ ] ] .

Metrics