Abstract

A commercial XeCl laser system is operated with a phase-conjugating mirror based on stimulated Brillouin scattering (SBS). No conventional start resonator is required. The near-field profile is converted from rectangular to near-Gaussian and the far-field spatial beam quality is increased by up to 60% relative to a conventional plane–plane resonator. The small reflectivity of a single SBS cell reduces the laser output power. A double-cell arrangement improves the reflectivity and the laser power, resulting in a simple excimer SBS resonator with improved brightness.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler, H. Meng, Opt. Lett. 16, 569 (1991).
    [CrossRef] [PubMed]
  2. P. J. Soan, M. J. Damzen, V. Aboites, M. H. R. Hutchinson, Opt. Lett. 19, 783 (1994).
    [CrossRef] [PubMed]
  3. M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, Appl. Phys. B 48, 351 (1989).
    [CrossRef]
  4. V. F. Losev, Yu. N. Panchenko, Quantum Electron. 25, 450 (1995).
    [CrossRef]
  5. J. W. Chen, V. Nassisi, M. R. Perrone, Opt. Commun. 79, 381 (1990).
    [CrossRef]
  6. H. J. Eichler, R. König, H.-J. Pätzold, J. Schwartz, Appl. Phys. B 61, 73 (1995).
    [CrossRef]
  7. M. R. Perrone, Y. B. Yao, IEEE J. Quantum Electron. 30, 1327 (1994).
    [CrossRef]
  8. A. A. Filippo, M. R. Perrone, J. Mod. Opt. 39, 1829 (1992).
  9. N. A. Kurnit, S. J. Thomas, IEEE J. Quantum Electron. 25, 421 (1989).
    [CrossRef]
  10. M. R. Perrone, Y. B. Yao, Opt. Lett. 19, 1052 (1994).
    [CrossRef] [PubMed]
  11. D. Pohl, Phys. Lett. A 24, 239 (1967).
    [CrossRef]
  12. Y. Jingguo, J. Hongwei, Opt. Quantum Electron. 26, 929 (1994).
  13. A. E. Siegman, Proc. SPIE 1224, 2 (1990).
    [CrossRef]
  14. H. J. Eichler, R. König, R. Menzel, H. J. Pätzold, J. Schwartz, J. Phys. D 25, 1161 (1992).
    [CrossRef]

1995 (2)

V. F. Losev, Yu. N. Panchenko, Quantum Electron. 25, 450 (1995).
[CrossRef]

H. J. Eichler, R. König, H.-J. Pätzold, J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

1994 (4)

M. R. Perrone, Y. B. Yao, IEEE J. Quantum Electron. 30, 1327 (1994).
[CrossRef]

P. J. Soan, M. J. Damzen, V. Aboites, M. H. R. Hutchinson, Opt. Lett. 19, 783 (1994).
[CrossRef] [PubMed]

M. R. Perrone, Y. B. Yao, Opt. Lett. 19, 1052 (1994).
[CrossRef] [PubMed]

Y. Jingguo, J. Hongwei, Opt. Quantum Electron. 26, 929 (1994).

1992 (2)

H. J. Eichler, R. König, R. Menzel, H. J. Pätzold, J. Schwartz, J. Phys. D 25, 1161 (1992).
[CrossRef]

A. A. Filippo, M. R. Perrone, J. Mod. Opt. 39, 1829 (1992).

1991 (1)

1990 (2)

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

J. W. Chen, V. Nassisi, M. R. Perrone, Opt. Commun. 79, 381 (1990).
[CrossRef]

1989 (2)

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, Appl. Phys. B 48, 351 (1989).
[CrossRef]

N. A. Kurnit, S. J. Thomas, IEEE J. Quantum Electron. 25, 421 (1989).
[CrossRef]

1967 (1)

D. Pohl, Phys. Lett. A 24, 239 (1967).
[CrossRef]

Aboites, V.

Chen, J. W.

J. W. Chen, V. Nassisi, M. R. Perrone, Opt. Commun. 79, 381 (1990).
[CrossRef]

Damzen, M. J.

P. J. Soan, M. J. Damzen, V. Aboites, M. H. R. Hutchinson, Opt. Lett. 19, 783 (1994).
[CrossRef] [PubMed]

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, Appl. Phys. B 48, 351 (1989).
[CrossRef]

Eichler, H. J.

H. J. Eichler, R. König, H.-J. Pätzold, J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

H. J. Eichler, R. König, R. Menzel, H. J. Pätzold, J. Schwartz, J. Phys. D 25, 1161 (1992).
[CrossRef]

H. J. Eichler, H. Meng, Opt. Lett. 16, 569 (1991).
[CrossRef] [PubMed]

Filippo, A. A.

A. A. Filippo, M. R. Perrone, J. Mod. Opt. 39, 1829 (1992).

Hongwei, J.

Y. Jingguo, J. Hongwei, Opt. Quantum Electron. 26, 929 (1994).

Hutchinson, M. H. R.

P. J. Soan, M. J. Damzen, V. Aboites, M. H. R. Hutchinson, Opt. Lett. 19, 783 (1994).
[CrossRef] [PubMed]

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, Appl. Phys. B 48, 351 (1989).
[CrossRef]

Jingguo, Y.

Y. Jingguo, J. Hongwei, Opt. Quantum Electron. 26, 929 (1994).

König, R.

H. J. Eichler, R. König, H.-J. Pätzold, J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

H. J. Eichler, R. König, R. Menzel, H. J. Pätzold, J. Schwartz, J. Phys. D 25, 1161 (1992).
[CrossRef]

Kurnit, N. A.

N. A. Kurnit, S. J. Thomas, IEEE J. Quantum Electron. 25, 421 (1989).
[CrossRef]

Losev, V. F.

V. F. Losev, Yu. N. Panchenko, Quantum Electron. 25, 450 (1995).
[CrossRef]

Meng, H.

Menzel, R.

H. J. Eichler, R. König, R. Menzel, H. J. Pätzold, J. Schwartz, J. Phys. D 25, 1161 (1992).
[CrossRef]

Nassisi, V.

J. W. Chen, V. Nassisi, M. R. Perrone, Opt. Commun. 79, 381 (1990).
[CrossRef]

Osborne, M. R.

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, Appl. Phys. B 48, 351 (1989).
[CrossRef]

Panchenko, Yu. N.

V. F. Losev, Yu. N. Panchenko, Quantum Electron. 25, 450 (1995).
[CrossRef]

Pätzold, H. J.

H. J. Eichler, R. König, R. Menzel, H. J. Pätzold, J. Schwartz, J. Phys. D 25, 1161 (1992).
[CrossRef]

Pätzold, H.-J.

H. J. Eichler, R. König, H.-J. Pätzold, J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

Perrone, M. R.

M. R. Perrone, Y. B. Yao, Opt. Lett. 19, 1052 (1994).
[CrossRef] [PubMed]

M. R. Perrone, Y. B. Yao, IEEE J. Quantum Electron. 30, 1327 (1994).
[CrossRef]

A. A. Filippo, M. R. Perrone, J. Mod. Opt. 39, 1829 (1992).

J. W. Chen, V. Nassisi, M. R. Perrone, Opt. Commun. 79, 381 (1990).
[CrossRef]

Pohl, D.

D. Pohl, Phys. Lett. A 24, 239 (1967).
[CrossRef]

Schroeder, W. A.

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, Appl. Phys. B 48, 351 (1989).
[CrossRef]

Schwartz, J.

H. J. Eichler, R. König, H.-J. Pätzold, J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

H. J. Eichler, R. König, R. Menzel, H. J. Pätzold, J. Schwartz, J. Phys. D 25, 1161 (1992).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

Soan, P. J.

Thomas, S. J.

N. A. Kurnit, S. J. Thomas, IEEE J. Quantum Electron. 25, 421 (1989).
[CrossRef]

Yao, Y. B.

M. R. Perrone, Y. B. Yao, IEEE J. Quantum Electron. 30, 1327 (1994).
[CrossRef]

M. R. Perrone, Y. B. Yao, Opt. Lett. 19, 1052 (1994).
[CrossRef] [PubMed]

Appl. Phys. B (2)

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, Appl. Phys. B 48, 351 (1989).
[CrossRef]

H. J. Eichler, R. König, H.-J. Pätzold, J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

IEEE J. Quantum Electron (2)

M. R. Perrone, Y. B. Yao, IEEE J. Quantum Electron. 30, 1327 (1994).
[CrossRef]

N. A. Kurnit, S. J. Thomas, IEEE J. Quantum Electron. 25, 421 (1989).
[CrossRef]

J. Mod. Opt. (1)

A. A. Filippo, M. R. Perrone, J. Mod. Opt. 39, 1829 (1992).

J. Phys. D (1)

H. J. Eichler, R. König, R. Menzel, H. J. Pätzold, J. Schwartz, J. Phys. D 25, 1161 (1992).
[CrossRef]

Opt. Commun. (1)

J. W. Chen, V. Nassisi, M. R. Perrone, Opt. Commun. 79, 381 (1990).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

Y. Jingguo, J. Hongwei, Opt. Quantum Electron. 26, 929 (1994).

Phys. Lett. A (1)

D. Pohl, Phys. Lett. A 24, 239 (1967).
[CrossRef]

Proc. SPIE (1)

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

Quantum Electron. (1)

V. F. Losev, Yu. N. Panchenko, Quantum Electron. 25, 450 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XeCl–SBS–oscillator setup incorporating a commercial excimer laser head. MA’s, mode apertures; FP, fluorescent plate.

Fig. 2
Fig. 2

Temporal output of lasers with SBS mirrors and with two conventional mirrors with a 4-mm aperture for transverse-mode suppression and an R = 0.08 outcoupler. When two SBS cells (solid curve) are used, each peak shows a submodulation with a temporal interval corresponding to the double optical distance between both SBS interaction volumes.

Fig. 3
Fig. 3

Far-field transverse beam cross section of the SBS-resonator output with two 5-mm mode apertures measured 92 cm behind the first lens, L′. The theoretical curves are Gaussian fits indicating that the beam consists of two parts.

Fig. 4
Fig. 4

Transverse beam cross section of a conventional plane–plane resonator and a SBS resonator with 6-mm mode apertures measured 10 cm behind the output mirror.

Fig. 5
Fig. 5

Brightness and pulse energy (indicated by arrows) of lasers with a SBS mirror (using one or two SBS cells) and with two conventional mirrors. The spatial beam quality was measured 4 m away from the laser to reduce the influence of directly emitted ASE.

Metrics