Abstract

By a suitable choice of the wavelengths of two pumps and one signal about the zero-dispersion wavelength of a fiber, it is possible to generate mainly one four-wave-mixing product (idler) whose spectrum is a translated version of that of the signal; no spectral inversion or phase conjugation is involved. Unit conversion efficiency can in principle be obtained. Complete exchange of power between two wavelengths can be implemented. One can adjust the wavelengths of the signal and the idler at will over tens of nanometers, while maintaining high conversion efficiency, by suitably tuning the pumps. For fixed pump wavelengths, the signal bandwidth scales linearly with pump power and can reach several nanometers for pump powers of the order of several watts in silica fibers or less in highly nonlinear fibers.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Marhic, Y. Park, F. S. Yang, L. G. Kazovsky, Opt. Lett. 21, 1354 (1996).
    [CrossRef] [PubMed]
  2. K. Inoue, IEEE Photon. Technol. Lett. 6, 1451 (1994).
    [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  4. M. E. Marhic, N. Kagi, T.-K. Chiang, L. G. Kazovsky, Opt. Lett. 21, 573 (1996).
    [CrossRef] [PubMed]
  5. D. L. Williams, M. J. Holmes, J. Devaney, R. J. Manning, J. Lucek, K. Smith, B. J. Ainslie, Electron. Lett. 31, 1256 (1995); M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
    [CrossRef]

1996 (2)

1995 (1)

D. L. Williams, M. J. Holmes, J. Devaney, R. J. Manning, J. Lucek, K. Smith, B. J. Ainslie, Electron. Lett. 31, 1256 (1995); M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

1994 (1)

K. Inoue, IEEE Photon. Technol. Lett. 6, 1451 (1994).
[CrossRef]

1989 (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Ainslie, B. J.

D. L. Williams, M. J. Holmes, J. Devaney, R. J. Manning, J. Lucek, K. Smith, B. J. Ainslie, Electron. Lett. 31, 1256 (1995); M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Chiang, T.-K.

Devaney, J.

D. L. Williams, M. J. Holmes, J. Devaney, R. J. Manning, J. Lucek, K. Smith, B. J. Ainslie, Electron. Lett. 31, 1256 (1995); M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Holmes, M. J.

D. L. Williams, M. J. Holmes, J. Devaney, R. J. Manning, J. Lucek, K. Smith, B. J. Ainslie, Electron. Lett. 31, 1256 (1995); M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Inoue, K.

K. Inoue, IEEE Photon. Technol. Lett. 6, 1451 (1994).
[CrossRef]

Kagi, N.

Kazovsky, L. G.

Lucek, J.

D. L. Williams, M. J. Holmes, J. Devaney, R. J. Manning, J. Lucek, K. Smith, B. J. Ainslie, Electron. Lett. 31, 1256 (1995); M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Manning, R. J.

D. L. Williams, M. J. Holmes, J. Devaney, R. J. Manning, J. Lucek, K. Smith, B. J. Ainslie, Electron. Lett. 31, 1256 (1995); M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Marhic, M. E.

Park, Y.

Smith, K.

D. L. Williams, M. J. Holmes, J. Devaney, R. J. Manning, J. Lucek, K. Smith, B. J. Ainslie, Electron. Lett. 31, 1256 (1995); M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Williams, D. L.

D. L. Williams, M. J. Holmes, J. Devaney, R. J. Manning, J. Lucek, K. Smith, B. J. Ainslie, Electron. Lett. 31, 1256 (1995); M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Yang, F. S.

Electron. Lett. (1)

D. L. Williams, M. J. Holmes, J. Devaney, R. J. Manning, J. Lucek, K. Smith, B. J. Ainslie, Electron. Lett. 31, 1256 (1995); M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Inoue, IEEE Photon. Technol. Lett. 6, 1451 (1994).
[CrossRef]

Nonlinear Fiber Optics (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Asymmetric frequency arrangements.

Fig. 2
Fig. 2

Locus of points of constant half-bandwidth Bλ in the (Δλi, Δλs) plane. The parameters are λ0 = 1.55 μm, β3 = 1.1 × 10−40 s3 m−1, γP0 = 1.4 × 10−2 m−1.

Fig. 3
Fig. 3

Conversion efficiency versus δλs. The parameters are λ0 = 1.55 μm, Δλi = 50 nm, Δλs = 10 nm, β3 = 1.1 × 10−40 s3 m−1, γP0 = 1.4 × 10−2 m−1.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

d A s / d z = 2 i γ P 0 A s + 2 i γ A a * A b A i exp ( i Δ β z ) ,
d A i / d z = 2 i γ P 0 A i + 2 i γ A b * A a A s exp ( - i Δ β z ) .
A a = A a , 0 exp [ i γ ( P a + 2 P b ) z ] ,
A b = A b , 0 exp [ i γ ( P b + 2 P a ) z ] ,
C s = A s exp [ - i ( 2 γ P 0 + κ / 2 ) z ] ,
C i = A i exp [ - i ( 2 γ P 0 - κ / 2 ) z ] ,
d 2 C i d z 2 + [ ( κ 2 ) 2 + 4 γ 2 P a P b ] C i = 0.
g 2 = ( κ / 2 ) 2 + 4 γ 2 P a P b .
g 2 ( Δ β / 2 ) 2 + ( γ P 0 ) 2 .
C s = C s , 0 [ cos ( g z ) - i κ 2 g sin ( g z ) ] ,
C i = C s , 0 2 i γ A a , 0 A b , 0 * g sin ( g z ) .
η = | C i C s , 0 | 2 .
η m = [ 1 + ( Δ β 2 γ P 0 ) 2 ] - 1 .
Δ β = 2 m = 1 β 2 m ( 2 m ) ! [ ( Δ ω s ) 2 m - ( Δ ω i ) 2 m ] ,
δ β = 2 m = 1 β 2 m ( ω c + δ ω 2 ) ( 2 m ) ! × [ ( Δ ω s + δ ω 2 ) 2 m - ( Δ ω i + δ ω 2 ) 2 m ] ,
β 2 ( ω c + δ ω 2 ) = β 2 + β 3 δ ω 2 ,
δ β = β 3 ( δ ω / 2 ) ( Δ ω s - Δ ω i ) ( Δ ω s + Δ ω i + δ ω ) .
B λ = 4 3 γ P 0 C 3 β 3 ( Δ λ s 2 - Δ λ i 2 ) .

Metrics