Abstract

Bandwidth-limited filtering has been proven to overcome certain limitations in soliton transmission systems. We propose super-Gaussian filters instead of Butterworth filter response obtained with conventionally used Fabry–Perot étalons as a method to improve soliton stability and reduce dispersion degradation and theoretically demonstrate their practical implementation in the form of holographic fiber gratings.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986); D. Marcuse, J. Lightwave Technol. 10, 273 (1992).
    [CrossRef] [PubMed]
  2. J. P. Gordon, Opt. Lett. 8, 596 (1983).
    [CrossRef] [PubMed]
  3. M. Nakazawa, H. Kubota, E. Yamada, K. Suzuki, Electron. Lett. 28, 1981 (1992).
  4. Y. Kodama, S. Wabnitz, Electron. Lett. 27, 1931 (1991); A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).
  5. L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
    [CrossRef]
  6. L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
    [CrossRef] [PubMed]
  7. Y. Kodama, M. Romangnoli, S. Wabnitz, Electron. Lett. 28, 1981 (1992).
  8. A. Mecozzi, Opt. Lett. 20, 1859 (1995).
  9. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 484 (1986); G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989).
  11. Y. Kodama, A. Hasegawa, Opt. Lett. 17, 32 (1992).
    [CrossRef]
  12. E. Peral, J. Capmany, J. Martí, Electron. Lett. 32, 918 (1996).
    [CrossRef]
  13. E. Peral, J. Capmany, J. Martí, “Iterative solution to the Gel’fand–Levitan–Marchenko equations and application to synthesis of fiber gratings,” IEEE Quantum Electron. (to be published).
  14. G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]

1996 (1)

E. Peral, J. Capmany, J. Martí, Electron. Lett. 32, 918 (1996).
[CrossRef]

1995 (1)

1993 (1)

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

1992 (4)

Y. Kodama, M. Romangnoli, S. Wabnitz, Electron. Lett. 28, 1981 (1992).

M. Nakazawa, H. Kubota, E. Yamada, K. Suzuki, Electron. Lett. 28, 1981 (1992).

Y. Kodama, A. Hasegawa, Opt. Lett. 17, 32 (1992).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

1991 (1)

Y. Kodama, S. Wabnitz, Electron. Lett. 27, 1931 (1991); A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).

1989 (1)

1986 (2)

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 484 (1986); G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
[CrossRef] [PubMed]

J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986); D. Marcuse, J. Lightwave Technol. 10, 273 (1992).
[CrossRef] [PubMed]

1983 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989).

Capmany, J.

E. Peral, J. Capmany, J. Martí, Electron. Lett. 32, 918 (1996).
[CrossRef]

E. Peral, J. Capmany, J. Martí, “Iterative solution to the Gel’fand–Levitan–Marchenko equations and application to synthesis of fiber gratings,” IEEE Quantum Electron. (to be published).

Chen, H. H.

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 484 (1986); G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
[CrossRef] [PubMed]

Evangelides, S. G.

Glenn, W. H.

Gordon, J. P.

Harvey, G. T.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Hasegawa, A.

Y. Kodama, A. Hasegawa, Opt. Lett. 17, 32 (1992).
[CrossRef]

Haus, H. A.

Kodama, Y.

Y. Kodama, A. Hasegawa, Opt. Lett. 17, 32 (1992).
[CrossRef]

Y. Kodama, M. Romangnoli, S. Wabnitz, Electron. Lett. 28, 1981 (1992).

Y. Kodama, S. Wabnitz, Electron. Lett. 27, 1931 (1991); A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).

Kubota, H.

M. Nakazawa, H. Kubota, E. Yamada, K. Suzuki, Electron. Lett. 28, 1981 (1992).

Lee, Y. C.

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 484 (1986); G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
[CrossRef] [PubMed]

Lichtman, E.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Martí, J.

E. Peral, J. Capmany, J. Martí, Electron. Lett. 32, 918 (1996).
[CrossRef]

E. Peral, J. Capmany, J. Martí, “Iterative solution to the Gel’fand–Levitan–Marchenko equations and application to synthesis of fiber gratings,” IEEE Quantum Electron. (to be published).

Mecozzi, A.

Meltz, G.

Menyuk, C. R.

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 484 (1986); G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
[CrossRef] [PubMed]

Mollenauer, L. F.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

Morey, W. W.

Nakazawa, M.

M. Nakazawa, H. Kubota, E. Yamada, K. Suzuki, Electron. Lett. 28, 1981 (1992).

Neubelt, M. J.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Peral, E.

E. Peral, J. Capmany, J. Martí, Electron. Lett. 32, 918 (1996).
[CrossRef]

E. Peral, J. Capmany, J. Martí, “Iterative solution to the Gel’fand–Levitan–Marchenko equations and application to synthesis of fiber gratings,” IEEE Quantum Electron. (to be published).

Romangnoli, M.

Y. Kodama, M. Romangnoli, S. Wabnitz, Electron. Lett. 28, 1981 (1992).

Suzuki, K.

M. Nakazawa, H. Kubota, E. Yamada, K. Suzuki, Electron. Lett. 28, 1981 (1992).

Wabnitz, S.

Y. Kodama, M. Romangnoli, S. Wabnitz, Electron. Lett. 28, 1981 (1992).

Y. Kodama, S. Wabnitz, Electron. Lett. 27, 1931 (1991); A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).

Wai, P. K. A.

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 484 (1986); G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
[CrossRef] [PubMed]

Yamada, E.

M. Nakazawa, H. Kubota, E. Yamada, K. Suzuki, Electron. Lett. 28, 1981 (1992).

Electron. Lett. (5)

M. Nakazawa, H. Kubota, E. Yamada, K. Suzuki, Electron. Lett. 28, 1981 (1992).

Y. Kodama, S. Wabnitz, Electron. Lett. 27, 1931 (1991); A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Y. Kodama, M. Romangnoli, S. Wabnitz, Electron. Lett. 28, 1981 (1992).

E. Peral, J. Capmany, J. Martí, Electron. Lett. 32, 918 (1996).
[CrossRef]

Opt. Lett. (7)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989).

E. Peral, J. Capmany, J. Martí, “Iterative solution to the Gel’fand–Levitan–Marchenko equations and application to synthesis of fiber gratings,” IEEE Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Time width (rms) normalized by the soliton width T0 versus normalized propagation distance for first-, second-, and third-order super-Gaussian filters.

Fig. 2
Fig. 2

Time jitter (rms) defined as σGH2 = 〈∫ t|u|2dt/ |u|2dt〉 normalized by the soliton width T0 versus normalized propagation distance for γ = 0.2 without filters (dotted curve) and with second- and third-order super-Gaussian filters. The theoretical Gordon–Haus (GH) jitter is also shown for comparison.

Fig. 3
Fig. 3

Normalized coupling coefficient amplitude that synthesizes a super-Gaussian filter exp(−δ4).

Tables (1)

Tables Icon

Table 1 Excess Gain Required for γ= 0.15 and Peak Noise Power Spectral Density Relative to that Obtained without Filters at Several Propagation Distances (Real Values in Parentheses) for 1st- and 2nd-Order Super-Gaussian and Fabry–Perot Filters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

u ξ - i 2 2 u τ 2 - i u 2 u = α u + β 3 u τ 3 - n 1 η n ( - i τ ) n u .
α = 1 2 A 0 Re ( - F - 1 { U ( Ω ) log [ h ( Ω ) ] / L a } u * ( t ) d t ) ,

Metrics