Abstract

An autosoliton, which is an asymptotically stable solitary wave with all parameters fixed by the medium, is predicted in a fiber with distributed saturable amplifiers. The parameters of the autosoliton observed in numerical simulations are in excellent agreement with those predicted theoretically.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. H. F. Liendenbaum, J. J. E. Reid, L. F. Teimeijer, A. J. Boot, P. I. Kuindersma, I. Gabitov, A. Mattheus, presented at the 20th European Conference on Optical Communication, Florence, Italy, September 25–29, 1994.
  2. A. Mecozzi, Opt. Lett. 20, 1616 (1995).
    [CrossRef] [PubMed]
  3. C. R. Doerr, W. S. Wong, H. S. Haus, E. P. Ippen, Opt. Lett. 19, 1747 (1994).
    [CrossRef] [PubMed]
  4. O. E. Martinez, R. L. Fork, J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1986).
  5. H. A. Haus, J. P. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
    [CrossRef]
  6. V. S. Grigoryan, Phys. Lett. A 149, 371 (1990).
    [CrossRef]
  7. V. S. Grigoryan, T. S. Muradyan, J. Opt. Soc. Am. B 8, 1757 (1991).
    [CrossRef]

1995

1994

1991

1990

V. S. Grigoryan, Phys. Lett. A 149, 371 (1990).
[CrossRef]

1986

O. E. Martinez, R. L. Fork, J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1986).

Boot, A. J.

C. T. H. F. Liendenbaum, J. J. E. Reid, L. F. Teimeijer, A. J. Boot, P. I. Kuindersma, I. Gabitov, A. Mattheus, presented at the 20th European Conference on Optical Communication, Florence, Italy, September 25–29, 1994.

Doerr, C. R.

Fork, R. L.

O. E. Martinez, R. L. Fork, J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1986).

Fujimoto, J. P.

Gabitov, I.

C. T. H. F. Liendenbaum, J. J. E. Reid, L. F. Teimeijer, A. J. Boot, P. I. Kuindersma, I. Gabitov, A. Mattheus, presented at the 20th European Conference on Optical Communication, Florence, Italy, September 25–29, 1994.

Gordon, J. P.

O. E. Martinez, R. L. Fork, J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1986).

Grigoryan, V. S.

Haus, H. A.

Haus, H. S.

Ippen, E. P.

Kuindersma, P. I.

C. T. H. F. Liendenbaum, J. J. E. Reid, L. F. Teimeijer, A. J. Boot, P. I. Kuindersma, I. Gabitov, A. Mattheus, presented at the 20th European Conference on Optical Communication, Florence, Italy, September 25–29, 1994.

Liendenbaum, C. T. H. F.

C. T. H. F. Liendenbaum, J. J. E. Reid, L. F. Teimeijer, A. J. Boot, P. I. Kuindersma, I. Gabitov, A. Mattheus, presented at the 20th European Conference on Optical Communication, Florence, Italy, September 25–29, 1994.

Martinez, O. E.

O. E. Martinez, R. L. Fork, J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1986).

Mattheus, A.

C. T. H. F. Liendenbaum, J. J. E. Reid, L. F. Teimeijer, A. J. Boot, P. I. Kuindersma, I. Gabitov, A. Mattheus, presented at the 20th European Conference on Optical Communication, Florence, Italy, September 25–29, 1994.

Mecozzi, A.

Muradyan, T. S.

Reid, J. J. E.

C. T. H. F. Liendenbaum, J. J. E. Reid, L. F. Teimeijer, A. J. Boot, P. I. Kuindersma, I. Gabitov, A. Mattheus, presented at the 20th European Conference on Optical Communication, Florence, Italy, September 25–29, 1994.

Teimeijer, L. F.

C. T. H. F. Liendenbaum, J. J. E. Reid, L. F. Teimeijer, A. J. Boot, P. I. Kuindersma, I. Gabitov, A. Mattheus, presented at the 20th European Conference on Optical Communication, Florence, Italy, September 25–29, 1994.

Wong, W. S.

J. Opt. Soc. Am.

O. E. Martinez, R. L. Fork, J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1986).

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Lett. A

V. S. Grigoryan, Phys. Lett. A 149, 371 (1990).
[CrossRef]

Other

C. T. H. F. Liendenbaum, J. J. E. Reid, L. F. Teimeijer, A. J. Boot, P. I. Kuindersma, I. Gabitov, A. Mattheus, presented at the 20th European Conference on Optical Communication, Florence, Italy, September 25–29, 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Continuous distribution of the autosoliton profiles with different γ and fixed δ = δa in the medium with β = 2, Re(a) = 4, Im(a) = −20, R = 0.063, I = 0.063, and χ = 2.

Fig. 2
Fig. 2

Evolution of different initial pulses into autosoliton. The medium parameters are the same as those in Fig. 1. The pulses are plotted in the time framework that follows the maximum of the pulse.

Fig. 3
Fig. 3

Propagation velocity characteristic γa versus excess gain β; the other parameters are fixed and are the same as those in Fig. 1. The solid curve is the square dependence predicted by Eqs. (5), and the squares are results of numerical simulations.

Fig. 4
Fig. 4

Evolution of a chirped hyperbolic SSW [Eq. (6)] in a medium with β = 2, Re(a) = 1, Im(a) = −3, R = 1, I =1, and χ = 4 (a) without and (b) with saturated losses. Saturated losses were modeled by the term f = s/(1r|q|2); s = 3, r = 103.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i q z + 1 2 ( R - i I ) 2 q T 2 + χ q q 2 = i β q - i a q - T q 2 d T - i q f ( q 2 ) + F ^ ( z , T ) ,
i γ q τ + 1 / 2 ( R - i I ) q τ τ + χ q q 2 = ( i β + δ ) q - i a q - τ q 2 d τ .
2 i γ K + ( R - i I ) K 2 - 2 ( i β + δ ) = 0.
U K = U γ γ K + U δ δ K = 0.
γ = γ a = [ 2 β ( R 2 + I 2 ) / I ] 1 / 2 ,             δ = δ a = β R / I ,
q = A sec h ( D T + F z ) × exp ( i { B z + C T + G ln [ cosh ( D T + F z ) ] } ) ,

Metrics