Abstract

Spectral holography provides for the storage of data-encoded, time-domain optical signals in frequency-selective recording materials. This capability may form the basis for entirely new classes of ultrahigh-speed and -density optical storage devices. We demonstrate the implementation of swept-carrier spectral-holographic data storage in a single-sideband mode. Temporal-waveform information originally encoded in double-sideband format is re-created but stripped of one of its sidebands. The process described can be used to achieve higher spectral storage densities or as an optical single-sideband conversion device.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schwartz, Information Transmission, Modulation, and Noise, 3rd ed. (McGraw-Hill, New York, 1980), Chap. 4.
  2. R. E. Markle, Bell Lab. Rec. 56, 104 (1978).
  3. W. E. Moerner, W. Lenth, G. C. Bjorklund, in Persistent Spectral Hole-Burning: Science and Applications, W. E. Moerner, ed., Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988), Chap. 7.
    [CrossRef]
  4. T. W. Mossberg, Opt. Lett. 7, 77 (1982).
    [CrossRef] [PubMed]
  5. N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984); Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986); W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
    [CrossRef] [PubMed]
  6. M. Mitsunaga, N. Uesugi, Opt. Lett. 15, 195 (1990);M. Mitsunaga, N. Uesugi, Opt. Lett. 16, 264 (1991); M. Mitsunaga, N. Uesugi, J. Lumin., 48/49, 459 (1991).
    [CrossRef] [PubMed]
  7. S. Kroll, L. E. Jusinski, R. Kachru, Opt. Lett. 16, 517 (1991).
    [CrossRef] [PubMed]
  8. M. Mitsunaga, R. Yano, N. Uesugi, Opt. Lett. 16, 1890 (1991).
    [CrossRef] [PubMed]
  9. X. A. Shen, R. Kachru, Opt. Lett. 18, 1967 (1993); Y. Bai, R. Kachru, Opt. Lett. 18, 1189 (1993).
    [CrossRef] [PubMed]
  10. M. Mitsunaga, N. Uesugi, H. Sasaki, K. Karaki, Opt. Lett. 19, 752 (1994).
    [CrossRef] [PubMed]
  11. T. W. Mossberg, Opt. Lett. 17, 535 (1992).
    [CrossRef] [PubMed]
  12. H. Lin, T. Wang, T. W. Mossberg, Opt. Lett. 20, 1658 (1995).
    [CrossRef] [PubMed]
  13. H. Lin, T. Wang, G. A. Wilson, T. W. Mossberg, Opt. Lett. 20, 91 (1995).
    [CrossRef] [PubMed]
  14. S. Bernet, B. Kohler, A. Rebane, A. Renn, U. P. Wild, J. Opt. Soc. Am. B 9, 987 (1995); A. Rebane, O. Ollikainen, H. Schwoerer, D. Erni, U. P. Wild, J. Lumin. 64, 283 (1995).
    [CrossRef]
  15. J. Huang, J. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. Mossberg, Opt. Commun. 75, 29 (1990).
    [CrossRef] [PubMed]
  16. G. K. Liu, R. L. Cone, Phys. Rev. B 41, 6193 (1990).
    [CrossRef]
  17. M. Mitsunaga, T. Takagahara, R. Yano, N. Uesugi, Phys. Rev. Lett. 68, 3216 (1992).
    [CrossRef] [PubMed]

1995 (3)

1994 (1)

1993 (1)

1992 (2)

T. W. Mossberg, Opt. Lett. 17, 535 (1992).
[CrossRef] [PubMed]

M. Mitsunaga, T. Takagahara, R. Yano, N. Uesugi, Phys. Rev. Lett. 68, 3216 (1992).
[CrossRef] [PubMed]

1991 (2)

1990 (2)

1989 (1)

J. Huang, J. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. Mossberg, Opt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

1984 (1)

N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984); Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986); W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef] [PubMed]

1982 (1)

1978 (1)

R. E. Markle, Bell Lab. Rec. 56, 104 (1978).

Babbitt, W. R.

N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984); Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986); W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef] [PubMed]

Bai, Y. S.

N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984); Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986); W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef] [PubMed]

Bernet, S.

Bjorklund, G. C.

W. E. Moerner, W. Lenth, G. C. Bjorklund, in Persistent Spectral Hole-Burning: Science and Applications, W. E. Moerner, ed., Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988), Chap. 7.
[CrossRef]

Carlson, N. W.

N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984); Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986); W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef] [PubMed]

Cone, R. L.

G. K. Liu, R. L. Cone, Phys. Rev. B 41, 6193 (1990).
[CrossRef]

Huang, J.

J. Huang, J. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. Mossberg, Opt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

Jusinski, L. E.

Kachru, R.

Karaki, K.

Kohler, B.

Kroll, S.

Lenth, W.

W. E. Moerner, W. Lenth, G. C. Bjorklund, in Persistent Spectral Hole-Burning: Science and Applications, W. E. Moerner, ed., Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988), Chap. 7.
[CrossRef]

Lezama, A.

J. Huang, J. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. Mossberg, Opt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

Lin, H.

Liu, G. K.

G. K. Liu, R. L. Cone, Phys. Rev. B 41, 6193 (1990).
[CrossRef]

Markle, R. E.

R. E. Markle, Bell Lab. Rec. 56, 104 (1978).

Mitsunaga, M.

Moerner, W. E.

W. E. Moerner, W. Lenth, G. C. Bjorklund, in Persistent Spectral Hole-Burning: Science and Applications, W. E. Moerner, ed., Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988), Chap. 7.
[CrossRef]

Mossberg, T. W.

H. Lin, T. Wang, G. A. Wilson, T. W. Mossberg, Opt. Lett. 20, 91 (1995).
[CrossRef] [PubMed]

H. Lin, T. Wang, T. W. Mossberg, Opt. Lett. 20, 1658 (1995).
[CrossRef] [PubMed]

T. W. Mossberg, Opt. Lett. 17, 535 (1992).
[CrossRef] [PubMed]

J. Huang, J. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. Mossberg, Opt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984); Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986); W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef] [PubMed]

T. W. Mossberg, Opt. Lett. 7, 77 (1982).
[CrossRef] [PubMed]

Rebane, A.

Renn, A.

Sasaki, H.

Schwartz, M.

M. Schwartz, Information Transmission, Modulation, and Noise, 3rd ed. (McGraw-Hill, New York, 1980), Chap. 4.

Shen, X. A.

Takagahara, T.

M. Mitsunaga, T. Takagahara, R. Yano, N. Uesugi, Phys. Rev. Lett. 68, 3216 (1992).
[CrossRef] [PubMed]

Uesugi, N.

Wang, T.

Wild, U. P.

Wilson, G. A.

Yano, R.

M. Mitsunaga, T. Takagahara, R. Yano, N. Uesugi, Phys. Rev. Lett. 68, 3216 (1992).
[CrossRef] [PubMed]

M. Mitsunaga, R. Yano, N. Uesugi, Opt. Lett. 16, 1890 (1991).
[CrossRef] [PubMed]

Zhang, J.

J. Huang, J. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. Mossberg, Opt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

Bell Lab. Rec. (1)

R. E. Markle, Bell Lab. Rec. 56, 104 (1978).

J. Opt. Soc. Am. B (1)

Opt. Lett. (9)

Phys. Rev. A (1)

N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984); Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986); W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef] [PubMed]

Phys. Rev. B (1)

G. K. Liu, R. L. Cone, Phys. Rev. B 41, 6193 (1990).
[CrossRef]

Phys. Rev. Lett. (2)

M. Mitsunaga, T. Takagahara, R. Yano, N. Uesugi, Phys. Rev. Lett. 68, 3216 (1992).
[CrossRef] [PubMed]

J. Huang, J. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. Mossberg, Opt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

Other (2)

W. E. Moerner, W. Lenth, G. C. Bjorklund, in Persistent Spectral Hole-Burning: Science and Applications, W. E. Moerner, ed., Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988), Chap. 7.
[CrossRef]

M. Schwartz, Information Transmission, Modulation, and Noise, 3rd ed. (McGraw-Hill, New York, 1980), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a)–(d) Calculated quasi-isochromatic temporal projections of simple model reference and data beams. rCH = 5 MHz/μs. (a) Quasi-isochromatic projection of the reference beam. (b), (c), (d) Quasi-isochromatic projections of a data beam modulated by a 5-MHz square wave with the frequency offset νRD = −20, 0, and 20 MHz, respectively. (e) Power spectrum of the square-wave data-beam modulation envelope.

Fig. 2
Fig. 2

Numerical calculations of total signal energy as a function of frequency offset νRD. The data beams that are used are unmodulated. Solid (dashed) curve, data pulse duration of 32 μs (10 μs). The chirp rate is fixed at rCH = 2 MHz/μs.

Fig. 3
Fig. 3

Single-event experimental recordings of signal beams and numerical simulations of the same as a function of frequency offset, νRD. (a) Input data-beam power versus time. (b), (c), (d), (e), (f), (g) Experimentally observed power versus time for output signals with νRD values of −2.5, −1, 0, 1, 2.5, and 5 MHz, respectively. ( h), (i), ( j), (k), ( l ), (m) Calculated power versus time for νRD values of −2.5, −1, 0, 1, 2.5, and 5 MHz, respectively. For traces (d) and (j), νRD = 0, and only a single sideband of the data modulation envelope contributes to the output signal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) - E r d t ( ν ) E ref t * ( ν ) E d t ( ν ) exp ( 2 π i ν t ) d ν ,
E ɛ t ( ν ) = - t E ɛ ( t ) exp ( - 2 π i ν t ) d t .

Metrics