Abstract

We present a rigorous numerical simulation analysis of the second-harmonic generation of p-polarized light in reflection from a one-dimensional, randomly rough, metal surface when the plane of incidence is perpendicular to the generators of the surface. When the incident light cannot couple to surface electromagnetic waves supported by the metal surface at the fundamental frequency, the angular distribution of the intensity of the incoherent component of the scattered light at the harmonic frequency displays either well-defined peaks or dips in the retroreflection direction and in the direction normal to the mean plane of the surface. These effects are suppressed by the direct excitation of surface polaritons at the fundamental frequency.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription