Abstract

We present a novel digital holographic data storage system based on wavelength multiplexing in 90° geometry, using an automated tunable diode laser and a lithium niobate crystal. The automatic storage and retrieval of a 60-kbyte data file, as well as the limitations and future implementations of the system, are discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Heanue, M. C. Bashaw, L. Hesselink, Science 265, 749 (1994).
    [CrossRef] [PubMed]
  2. G. A. Rakuljic, V. Leyva, A. Yariv, Opt. Lett. 17, 1471 (1992).
    [CrossRef] [PubMed]
  3. K. Curtis, C. Gu, D. Psaltis, Opt. Lett. 18, 1001 (1993).
    [CrossRef] [PubMed]
  4. F. T. S. Yu, F. Zhao, H. Zhao, S. Yin, Opt. Lett. 18, 1849 (1993).
    [CrossRef] [PubMed]
  5. S. Campbell, X. Yi, P. Yeh, Opt. Lett. 19, 2161 (1993).
    [CrossRef]

1994 (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

1993 (3)

1992 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: FP, Fabry–Perot scanner; S’s, shutters; λ/2 half-wave plate; P, polarizer; RS, rotation stage; I, iris; PD, photodiode.

Fig. 2
Fig. 2

Typical digital hologram. The border lines are used by the camera to align the SLM and map its pixels.

Fig. 3
Fig. 3

Sparse-angle wavelength multiplexing. The two shades of gray represent two distinct nonoverlapping series of wavelength-multiplexed holograms written at two different angles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ν = c / n L ( 1 + cos θ ) ,
Δ ν total Δ ν laser + Δ ν ,
NSR max ( x 2 + y 2 ) 2 F 2 ( 1 + cos θ ) + y F ( 1 + cos θ ) sin θ ,

Metrics