Abstract

We present experimental observations of diffusely scattered second-harmonic light from a silver surface with weak random roughness. The roughness provides coupling of the incident wave to counterpropagating surface plasmon polaritons in the second harmonic. Rather than observing enhancement in the backscattering direction, a distinct minimum in the angular distribution is seen.

© 1996 Optical Society of America

Full Article  |  PDF Article
Related Articles
Resonant light scattering from weakly rough random surfaces and imperfect gratings

T. R. Michel
J. Opt. Soc. Am. A 11(6) 1874-1885 (1994)

Some aspects of light scattering from a randomly rough metal surface

V. Celli, A. A. Maradudin, A. M. Marvin, and A. R. McGurn
J. Opt. Soc. Am. A 2(12) 2225-2239 (1985)

Directionally scattered optical second-harmonic generation with surface plasmons

Xiujuan Wang and H. J. Simon
Opt. Lett. 16(19) 1475-1477 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription