Abstract

A new analysis of electromagnetic-field propagation is presented whereby the field-propagating step operators are derived from a direct method for solving Maxwell’s equations. This approach permits the accurate propagation of full-vectorial fields because it does not need approximations accompanied by a second-order derivative with respect to the propagating direction.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Feit, J. A. Fleck, Appl. Opt. 17, 3990 (1978).
    [CrossRef] [PubMed]
  2. D. Yevick, B. Hermansson, Electron. Lett. 25, 461 (1989).
    [CrossRef]
  3. T. B. Koch, J. B. Davies, D. Wickramasinghe, Electron. Lett. 25, 514 (1989).
    [CrossRef]
  4. D. Yevick, Opt. Quantum Electron. 26, S185 (1994).
    [CrossRef]

1994

D. Yevick, Opt. Quantum Electron. 26, S185 (1994).
[CrossRef]

1989

D. Yevick, B. Hermansson, Electron. Lett. 25, 461 (1989).
[CrossRef]

T. B. Koch, J. B. Davies, D. Wickramasinghe, Electron. Lett. 25, 514 (1989).
[CrossRef]

1978

Davies, J. B.

T. B. Koch, J. B. Davies, D. Wickramasinghe, Electron. Lett. 25, 514 (1989).
[CrossRef]

Feit, M. D.

Fleck, J. A.

Hermansson, B.

D. Yevick, B. Hermansson, Electron. Lett. 25, 461 (1989).
[CrossRef]

Koch, T. B.

T. B. Koch, J. B. Davies, D. Wickramasinghe, Electron. Lett. 25, 514 (1989).
[CrossRef]

Wickramasinghe, D.

T. B. Koch, J. B. Davies, D. Wickramasinghe, Electron. Lett. 25, 514 (1989).
[CrossRef]

Yevick, D.

D. Yevick, Opt. Quantum Electron. 26, S185 (1994).
[CrossRef]

D. Yevick, B. Hermansson, Electron. Lett. 25, 461 (1989).
[CrossRef]

Appl. Opt.

Electron. Lett.

D. Yevick, B. Hermansson, Electron. Lett. 25, 461 (1989).
[CrossRef]

T. B. Koch, J. B. Davies, D. Wickramasinghe, Electron. Lett. 25, 514 (1989).
[CrossRef]

Opt. Quantum Electron.

D. Yevick, Opt. Quantum Electron. 26, S185 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Field distributions of |Ex| for TM-mode waves propagating in a directional coupler.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E = E s ( x , y , z ) exp ( j ω t j β s z ) ,
H = H s ( x , y , z ) exp ( j ω t j β s z ) ,
E x s z = j β s E x s + E z s x j ω ( μ y x H x s + μ y y H y s + μ y z H z s ) ,
E y s z = j β s E y s + E z s y + j ω ( μ x x H x s + μ x y H y s + μ x z H z s ) ,
H x s z = j β s H x s + H z s x + j ω ( y x E x s + y y E y s + y z E z s ) ,
H y s z = j β s H y s + H z s y j ω ( x x E x s + x y E y s + x z E z s ) ;
E z s = 1 z z [ j ω ( H x s y H y s x ) z x E x s z y E y s ] ,
H z s = 1 μ z z [ j ω ( E x s y + E y s x ) μ z x H x s μ z y H y s ] ,
z Φ = A Φ .
Φ | p , q r + 1 Φ | p , q r Δ z = w A | p , q r + 1 Φ | p , q r + 1 + ( 1 w ) A | p , q r Φ | p , q r
H z s x | p r = j ω μ 0 Δ x 2 ( E y s | p 1 r 2 E y s | p r + E y s | p + 1 r ) ,
E z s x | p r = 2 j ω 0 Δ x 2 [ 1 n p 1 2 + n p 2 H y s | p 1 r ( 1 n p 1 2 + n p 2 + 1 n p 2 + n p + 1 2 ) H y s | p r + 1 n p 2 + n p + 1 2 H y s | p + 1 r ] ,

Metrics