Abstract

We describe a method, based on the phase mismatch of four-wave mixing, for direct and accurate measurement of the dispersion map, D(λ, z), of an optical fiber. The method, which requires no wavelength scanning and access to only one end of the fiber, has produced the data for an entire 34-km span, including hundreds of repetitions for signal averaging, in less than 0.25 s. Spatial resolution and accuracy in that first experimental test were ~1 km and δD ~ ±0.03 ps/(nm km), respectively.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nishi, M. Saruwatari, Electron. Lett. 31, 225 (1995).
    [CrossRef]
  2. R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, U. Koren, Electron. Lett. 31, 2115 (1995).
    [CrossRef]
  3. See, for example, P. V. Mamyshev, L. F. Mollenauer, Opt. Lett. 21, 396 (1996).
    [CrossRef] [PubMed]

1996

1995

S. Nishi, M. Saruwatari, Electron. Lett. 31, 225 (1995).
[CrossRef]

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, U. Koren, Electron. Lett. 31, 2115 (1995).
[CrossRef]

Derosier, R. M.

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, U. Koren, Electron. Lett. 31, 2115 (1995).
[CrossRef]

Eiselt, M.

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, U. Koren, Electron. Lett. 31, 2115 (1995).
[CrossRef]

Jopson, R. M.

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, U. Koren, Electron. Lett. 31, 2115 (1995).
[CrossRef]

Koren, U.

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, U. Koren, Electron. Lett. 31, 2115 (1995).
[CrossRef]

Mamyshev, P. V.

Mollenauer, L. F.

Nishi, S.

S. Nishi, M. Saruwatari, Electron. Lett. 31, 225 (1995).
[CrossRef]

Saruwatari, M.

S. Nishi, M. Saruwatari, Electron. Lett. 31, 225 (1995).
[CrossRef]

Stolen, R. H.

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, U. Koren, Electron. Lett. 31, 2115 (1995).
[CrossRef]

Vengsarkar, A. M.

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, U. Koren, Electron. Lett. 31, 2115 (1995).
[CrossRef]

Electron. Lett.

S. Nishi, M. Saruwatari, Electron. Lett. 31, 225 (1995).
[CrossRef]

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, U. Koren, Electron. Lett. 31, 2115 (1995).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectrum of the four-wave mixing processes [Eqs. (1)].

Fig. 2
Fig. 2

Most probable band for transmission, associated bands for λ0, and most suitable wavelengths for measurement of D maps, in relation to the Er fiber amplifier gain profile.

Fig. 3
Fig. 3

Schematic of the apparatus. The acousto-optic (A.O.) modulator shapes the pulses from the cw sources at λ1 and λ2, and the following Er fiber amplifier builds them up to nearly 1-W peak power levels. The circulator sends the pulses onto the fiber under test and directs the Rayleigh backscattered signal on the Er fiber preamplifier in the receiver channel. The tunable narrow-band filter consists of a piezo-tuned Fabry–Perot étalon with a bandwidth of 20 GHz and a free spectral range of 16 nm, cascaded with a tunable, 1-nm bandwidth interference filter. DET., detector.

Fig. 4
Fig. 4

Samples of the signal voltage waveform as obtained at λS = 1539.70 nm and as averaged over a few hundred repetitions (required total averaging time less than 0.2 s). Note the excellent signal-to-noise ratio, even from the far end of the 34.4-km span. (The high-intensity input end is at 0 km.) Similar results (not shown) were obtained at λA = 1529.05 nm.

Fig. 5
Fig. 5

Dispersion maps D(1557, z) of the 34.4-km fiber span: squares, as inferred from the Stokes data (Fig. 4); circles, as inferred from the anti-Stokes data; solid horizontal lines, path-average D values (as determined by more conventional methods) of the various segments making up the span; dashed curve, ideal exponential taper. (Note: the 0- and 34-km ends of the span are reversed from the convention used in Fig. 4.)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

2 ω 1 ω 2 + ω S ,
2 ω 2 ω 1 + ω A ,
δ k ( λ 1 ) = k 2 + k S 2 k 1 = [ ( 2 k ) / ( ω 2 ) ] | ω 1 δ ω 2 = 2 π c D ( λ 1 ) [ δ λ / λ ] 2 .
F S = 1 / Λ S = ( δ k ) / ( 2 π ) = c D ( λ 1 ) [ δ λ / λ ] 2 .
f sig ( t ) = ( c / 2 n ) F S ( z ) ,
t = ( 2 n z ) / c .
D ( λ 1 , z ) = ( 2 n / c 2 ) ( λ 1 / δ λ ) 2 f sig [ t = ( 2 n / c ) z ] .
P S ( z ) = 8 ( λ D c δ λ 2 ) 2 ( n 2 P 1 0 A eff ) 2 P 2 0 sin 2 ( δ k z / 2 ) × R δ z exp ( 4 α z ) .
δ k NL = γ ( 2 P 1 P 2 ) ,
γ = ( 2 π / λ ) ( n 2 / A eff ) .

Metrics