Abstract

It is shown experimentally that one can image an object embedded in a turbid medium by probing the medium with light with a rotating linear polarization. This method permits the ballistic photons to be isolated from the large background of photons that have been multiply scattered by optically dense anisotropic scatterers. This technique achieves a good signal-to-noise ratio even with a low-power continuous laser, leading to images with a diffraction-limited resolution comparable with that obtained in optically homogeneous media.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For recent reviews see, for example, A. Yodth, B. Chance, Phys. Today 48(3), 34 (1995); S. K. Gayen, R. R. Alfano, Opt. Photon. News 7(3), 17 (1996).
    [CrossRef]
  2. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
    [CrossRef] [PubMed]
  3. M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, Opt. Lett. 18, 1107 (1993).
    [CrossRef] [PubMed]
  4. E. Leith, C. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P. C. Sun, J. Valdmanis, G. Vossler, J. Opt. Soc. Am. A 9, 1148 (1992).
    [CrossRef]
  5. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. French, Opt. Commun. 122, 111 (1996).
    [CrossRef]
  6. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, Opt. Lett. 16, 1868 (1991).
    [CrossRef] [PubMed]
  7. O. Emile, F. Bretenaker, A. Le Floch, Phys. Rev. Lett. 75, 1907 (1995).
    [CrossRef] [PubMed]
  8. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  9. A. Ishimaru, C. W. Yeh, J. Opt. Soc. Am. A 1, 359 (1984).
    [CrossRef]
  10. J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, Appl. Opt. 31, 6535 (1992).
    [CrossRef] [PubMed]
  11. H. Horikinaka, K. Hashimoto, K. Wada, Y. Cho, Opt. Lett. 20, 1501 (1995).
    [CrossRef]
  12. S. G. Demos, R. R. Alfano, Opt. Lett. 21, 161 (1996).
    [CrossRef] [PubMed]
  13. D. Bicout, C. Brosseau, J. Phys. I (Paris) 2, 2047 (1992), and references therin.
  14. A. Ishimaru, Appl. Opt. 28, 2210 (1989).
    [CrossRef] [PubMed]
  15. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  16. D. A. O’Leary, B. Chance, A. Yodh, Phys. Rev. Lett. 69, 2658 (1992).
    [CrossRef]
  17. J. B. Fishkin, E. Gratton, J. Opt. Soc. Am. A 10, 127 (1993).
    [CrossRef] [PubMed]

1996 (2)

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. French, Opt. Commun. 122, 111 (1996).
[CrossRef]

S. G. Demos, R. R. Alfano, Opt. Lett. 21, 161 (1996).
[CrossRef] [PubMed]

1995 (3)

H. Horikinaka, K. Hashimoto, K. Wada, Y. Cho, Opt. Lett. 20, 1501 (1995).
[CrossRef]

O. Emile, F. Bretenaker, A. Le Floch, Phys. Rev. Lett. 75, 1907 (1995).
[CrossRef] [PubMed]

For recent reviews see, for example, A. Yodth, B. Chance, Phys. Today 48(3), 34 (1995); S. K. Gayen, R. R. Alfano, Opt. Photon. News 7(3), 17 (1996).
[CrossRef]

1993 (2)

1992 (4)

1991 (2)

1989 (1)

1984 (1)

Alfano, R. R.

S. G. Demos, R. R. Alfano, Opt. Lett. 21, 161 (1996).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

Barry, N. P.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. French, Opt. Commun. 122, 111 (1996).
[CrossRef]

Bicout, D.

D. Bicout, C. Brosseau, J. Phys. I (Paris) 2, 2047 (1992), and references therin.

Bonner, R. F.

Bretenaker, F.

O. Emile, F. Bretenaker, A. Le Floch, Phys. Rev. Lett. 75, 1907 (1995).
[CrossRef] [PubMed]

Brosseau, C.

D. Bicout, C. Brosseau, J. Phys. I (Paris) 2, 2047 (1992), and references therin.

Chance, B.

For recent reviews see, for example, A. Yodth, B. Chance, Phys. Today 48(3), 34 (1995); S. K. Gayen, R. R. Alfano, Opt. Photon. News 7(3), 17 (1996).
[CrossRef]

D. A. O’Leary, B. Chance, A. Yodh, Phys. Rev. Lett. 69, 2658 (1992).
[CrossRef]

Chen, C.

Chen, Y.

Cho, Y.

Dainty, J. C.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. French, Opt. Commun. 122, 111 (1996).
[CrossRef]

Demos, S. G.

Dilworth, D.

Duncan, M. D.

Emile, O.

O. Emile, F. Bretenaker, A. Le Floch, Phys. Rev. Lett. 75, 1907 (1995).
[CrossRef] [PubMed]

Fishkin, J. B.

French, P. M.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. French, Opt. Commun. 122, 111 (1996).
[CrossRef]

Fujimoto, J. G.

Gandjbakhche, A. H.

Gratton, E.

Hashimoto, K.

Hee, M. R.

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

Horikinaka, H.

Hyde, S. C. W.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. French, Opt. Commun. 122, 111 (1996).
[CrossRef]

Ishimaru, A.

Izatt, J. A.

Jones, R.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. French, Opt. Commun. 122, 111 (1996).
[CrossRef]

Le Floch, A.

O. Emile, F. Bretenaker, A. Le Floch, Phys. Rev. Lett. 75, 1907 (1995).
[CrossRef] [PubMed]

Leith, E.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

Lopez, J.

Mahon, R.

O’Leary, D. A.

D. A. O’Leary, B. Chance, A. Yodh, Phys. Rev. Lett. 69, 2658 (1992).
[CrossRef]

Reintjes, J.

Rudd, J.

Schmitt, J. M.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

Sun, P. C.

Swanson, E. A.

Tankersley, L. L.

Valdmanis, J.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Vossler, G.

Wada, K.

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

Yeh, C. W.

Yodh, A.

D. A. O’Leary, B. Chance, A. Yodh, Phys. Rev. Lett. 69, 2658 (1992).
[CrossRef]

Yodth, A.

For recent reviews see, for example, A. Yodth, B. Chance, Phys. Today 48(3), 34 (1995); S. K. Gayen, R. R. Alfano, Opt. Photon. News 7(3), 17 (1996).
[CrossRef]

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

Appl. Opt. (2)

J. Opt. Soc. Am. A (3)

J. Phys. I (Paris) (1)

D. Bicout, C. Brosseau, J. Phys. I (Paris) 2, 2047 (1992), and references therin.

Opt. Commun. (1)

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. French, Opt. Commun. 122, 111 (1996).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

D. A. O’Leary, B. Chance, A. Yodh, Phys. Rev. Lett. 69, 2658 (1992).
[CrossRef]

O. Emile, F. Bretenaker, A. Le Floch, Phys. Rev. Lett. 75, 1907 (1995).
[CrossRef] [PubMed]

Phys. Today (1)

For recent reviews see, for example, A. Yodth, B. Chance, Phys. Today 48(3), 34 (1995); S. K. Gayen, R. R. Alfano, Opt. Photon. News 7(3), 17 (1996).
[CrossRef]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

Other (2)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement. The linearly polarized beam (wavelength λ = 620 nm; 30-mW power) coming from a dye laser crosses a half-wave plate (HWP) rotating at angular velocity Ω and is changed into a linear polarization rotating at angular frequency 2Ω. After its propagation through the cell containing the turbid medium, which is located between two apertures (A1 and A2), the remaining light beam is analyzed by polarizer P. The lock-in amplifier locked to the motion of the half-wave plate selects the modulated component of the signal detected by the photomultiplier tube (D).

Fig. 2
Fig. 2

Experimental and theoretical evolutions of the demodulated signal versus position x of the cell. The left-hand figures were obtained with a 2.8-mm-wide 400-μm-thick absorbing object, and the right-hand figures with a 100-μm-diameter absorbing cylinder. (a), (b) Experimental profiles obtained with the usual modulation of the input intensity. (c), (c) Experimental profiles obtained by the rotating linear polarization method shown schematically in Fig. 1. (e), (f) Corresponding theoretical diffraction profiles obtained from the Huygens–Fresnel principle. Notice the 103 ratio between the vertical scales of (a) and (b) with respect to (c) and (d). In all cases, Ω/2π ≈ 70 Hz and the 50-mm-long turbid cell is filled with a mixture of one volume of skim milk and eight volumes of water. The two different objects are introduced in the middle of the cell.

Fig. 3
Fig. 3

Experimental two-dimensional image of a 600-mm-wide absorbing ovoid object suspended in the turbid medium by a 60-mm-diameter wire. We obtained the image by scanning the position of the whole cell along the x axis for different equally spaced values of y. The wire can be seen at the bottom and at the top of the image.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( L ) = I ( 0 ) exp ( L / λ s ) ,

Metrics