Abstract

A scheme for the readout of a hologram recorded in bacteriorhodopsin film with high diffraction efficiency and intensity is suggested and demonstrated. Two weak coherent continuous beams function as the recording beams, and a strong light pulse is used to read the real-time hologram. The width of the readout light pulse is modulated to be short compared with the erase time of the reading beam; the time space between two adjacent pulses is ensured to be longer than the time the beams take to recover the hologram, and high diffraction efficiency and intensity (~11 mW/cm2) can be obtained.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Birge, Annu. Rev. Phys. 41, 683 (1990).
    [CrossRef]
  2. D. Osterheit, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
    [CrossRef]
  3. D. Zeisel, N. Hampp, J. Phys. Chem. 96, 7788 (1992).
    [CrossRef]
  4. Q. W. Song, C. Zhang, R. Biumer, R. E. Gross, Z. Chen, R. R. Birge, Opt. Lett. 18, 1373 (1993).
    [CrossRef] [PubMed]
  5. D. Ziesel, N. Hampp, Opt. Lett. 19, 1412 (1994).
    [CrossRef]
  6. N. Hampp, A. Popp, C. Brauchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
    [CrossRef]
  7. J. D. Downie, Opt. Lett. 20, 201 (1995).
    [CrossRef] [PubMed]
  8. R. R. Birge, IEEE Trans. Comput. 25, 56 (1992).
  9. J. D. Downie, Appl. Opt. 34, 6021 (1995).
    [CrossRef] [PubMed]
  10. O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, Opt. Lett. 15, 1117 (1990).
    [CrossRef] [PubMed]
  11. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

1995 (2)

1994 (1)

1993 (1)

1992 (3)

D. Zeisel, N. Hampp, J. Phys. Chem. 96, 7788 (1992).
[CrossRef]

N. Hampp, A. Popp, C. Brauchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

R. R. Birge, IEEE Trans. Comput. 25, 56 (1992).

1991 (1)

D. Osterheit, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[CrossRef]

1990 (2)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Birge, R. R.

Q. W. Song, C. Zhang, R. Biumer, R. E. Gross, Z. Chen, R. R. Birge, Opt. Lett. 18, 1373 (1993).
[CrossRef] [PubMed]

R. R. Birge, IEEE Trans. Comput. 25, 56 (1992).

R. R. Birge, Annu. Rev. Phys. 41, 683 (1990).
[CrossRef]

Biumer, R.

Brauchle, C.

N. Hampp, A. Popp, C. Brauchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

D. Osterheit, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[CrossRef]

Chen, Z.

Downie, J. D.

Fischer, B.

Gross, R. E.

Hampp, N.

D. Ziesel, N. Hampp, Opt. Lett. 19, 1412 (1994).
[CrossRef]

D. Zeisel, N. Hampp, J. Phys. Chem. 96, 7788 (1992).
[CrossRef]

N. Hampp, A. Popp, C. Brauchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

D. Osterheit, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Lewis, A.

Nebenzahl, I.

Oesterhelt, D.

N. Hampp, A. Popp, C. Brauchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

Osterheit, D.

D. Osterheit, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[CrossRef]

Popp, A.

N. Hampp, A. Popp, C. Brauchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

Song, Q. W.

Werner, O.

Zeisel, D.

D. Zeisel, N. Hampp, J. Phys. Chem. 96, 7788 (1992).
[CrossRef]

Zhang, C.

Ziesel, D.

Annu. Rev. Phys. (1)

R. R. Birge, Annu. Rev. Phys. 41, 683 (1990).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

IEEE Trans. Comput. (1)

R. R. Birge, IEEE Trans. Comput. 25, 56 (1992).

J. Phys. Chem. (2)

D. Zeisel, N. Hampp, J. Phys. Chem. 96, 7788 (1992).
[CrossRef]

N. Hampp, A. Popp, C. Brauchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

Opt. Lett. (4)

Q. Rev. Biophys. (1)

D. Osterheit, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Theoretical diffraction efficiency as a function of the width of the readout light pulse, with the parameters given in the text. The values of IR/Iw0 for curves 1, 2, 3, and 4 are 10−3, 10−1, 1, and ≥10, respectively.

Fig. 2
Fig. 2

Dependences of the diffraction efficiency (dashed curves; left coordinate axis) and intensity (solid curves; right coordinate axis) on the intensity of the readout beam. Each curve is calculated for a specific pulse width (see the inset numbers). For each set of curves the other parameters are same as those of Fig. 1.

Fig. 3
Fig. 3

Schematic diagram for the experimental setup for reading the real-time hologram with a light pulse. M1, M2, mijrrors; BS’s, beam splitters.

Fig. 4
Fig. 4

Experimental diffraction intensity as a function of the readout intensity.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Br ( ground state ) M ( excited state ) .
d M / d t = K B B K M M ( M / τ M ) , B + M = B 0 ,
K B , M = 2 . 3026 Φ B , M B , M λ I w ( x ) N a hc = k B , M I w ( x ) ,
M w ( x ) = K B τ 0 B 0 [ 1 exp ( t / τ 0 ) ] = M w 0 ( x ) [ 1 exp ( t / τ 0 ) ] ,
τ 0 = τ M / [ 1 + ( K B + K M ) τ M ] .
δn ( x ) = ( n 0 2 + 1 ) 2 6000 n 0 ( R M R B ) M ( x ) = δ n 0 M ( x ) B 0 = Δ n 0 + Δ n ( x ) ,
M ( x , t ) = M w 0 ( x ) exp ( t / t 0 ) + k B [ I R + I w 0 ( 1 + cos kx ) ] ( k B + k M ) [ I R + I w 0 ( 1 + cos kx ) ] + 1 / τ M × [ 1 exp ( t / t 0 ) ] ,
t 0 = τ M 1 + ( k B + k M ) [ I R + I w 0 ( 1 + cos kx ) ] τ M .

Metrics