Abstract

We report on experimental observations of coherent backscattering signals from high-gain scattering media in the regime where significant amplification takes place over one transport length. Our samples consist of polymer sheets containing optically pumped dyes as the amplifying medium, with TiO2 nanoparticles providing the scattering. The width of the backscattering cones narrows with increasing amplification, while the enhancement factor remains unchanged.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
    [CrossRef] [PubMed]
  2. P.-E. Wolf, G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
    [CrossRef] [PubMed]
  3. T. Okamoto, T. Asakura, Opt. Lett. 21, 369 (1996).
    [CrossRef] [PubMed]
  4. A. Yu. Zyuzin, Europhys. Lett. 26, 517 (1994).
    [CrossRef]
  5. D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
    [CrossRef] [PubMed]
  6. R. M. Balachandran, D. P. Pacheco, N. M. Lawandy, Appl. Opt. 35, 640 (1996).
    [CrossRef] [PubMed]
  7. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
    [CrossRef]
  8. R. M. Balachandran, N. M. Lawandy, in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 239.
  9. R. M. Balachandran, N. M. Lawandy, D. P. Pacheco, presented at the 1994 Optical Society of America Annual Meeting, Dallas, Texas, October 2–7.
  10. T. W. Hänsch, “Application of dye lasers,” in Dye Lasers, F. P. Schafer, ed., Vol. 1 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), pp. 194–258.
  11. D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, J. Opt. Soc. Am. B 2, 1028 (1985).
    [CrossRef]
  12. A. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
    [CrossRef]
  13. G. J. Grofts, X. Banti, M. J. Damzen, Opt. Lett. 20, 1634 (1995).
    [CrossRef]

1996

1995

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

G. J. Grofts, X. Banti, M. J. Damzen, Opt. Lett. 20, 1634 (1995).
[CrossRef]

1994

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

A. Yu. Zyuzin, Europhys. Lett. 26, 517 (1994).
[CrossRef]

1993

A. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

1985

Allik, T. H.

A. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

Asakura, T.

Balachandran, R. M.

R. M. Balachandran, D. P. Pacheco, N. M. Lawandy, Appl. Opt. 35, 640 (1996).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

R. M. Balachandran, N. M. Lawandy, in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 239.

R. M. Balachandran, N. M. Lawandy, D. P. Pacheco, presented at the 1994 Optical Society of America Annual Meeting, Dallas, Texas, October 2–7.

Banti, X.

Chandra, S.

A. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

Damzen, M. J.

Dyumaev, K. M.

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Grofts, G. J.

Gromov, D. A.

Hänsch, T. W.

T. W. Hänsch, “Application of dye lasers,” in Dye Lasers, F. P. Schafer, ed., Vol. 1 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), pp. 194–258.

Hermes, A. E.

A. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

Hutchinson, J. A.

A. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

Lagendijk, A.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
[CrossRef] [PubMed]

Lawandy, N. M.

R. M. Balachandran, D. P. Pacheco, N. M. Lawandy, Appl. Opt. 35, 640 (1996).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

R. M. Balachandran, N. M. Lawandy, D. P. Pacheco, presented at the 1994 Optical Society of America Annual Meeting, Dallas, Texas, October 2–7.

R. M. Balachandran, N. M. Lawandy, in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 239.

Manenkov, A. A.

Maret, G.

P.-E. Wolf, G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
[CrossRef] [PubMed]

Maslyukov, A. P.

Matyushin, G. A.

Nechitailo, V. S.

Okamoto, T.

Pacheco, D. P.

R. M. Balachandran, D. P. Pacheco, N. M. Lawandy, Appl. Opt. 35, 640 (1996).
[CrossRef] [PubMed]

R. M. Balachandran, N. M. Lawandy, D. P. Pacheco, presented at the 1994 Optical Society of America Annual Meeting, Dallas, Texas, October 2–7.

Prokhorov, A. M.

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
[CrossRef] [PubMed]

Wiersma, D. S.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

Wolf, P.-E.

P.-E. Wolf, G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
[CrossRef] [PubMed]

Yu. Zyuzin, A.

A. Yu. Zyuzin, Europhys. Lett. 26, 517 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

Europhys. Lett.

A. Yu. Zyuzin, Europhys. Lett. 26, 517 (1994).
[CrossRef]

J. Opt. Soc. Am. B

Nature (London)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
[CrossRef] [PubMed]

P.-E. Wolf, G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
[CrossRef] [PubMed]

Other

R. M. Balachandran, N. M. Lawandy, in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 239.

R. M. Balachandran, N. M. Lawandy, D. P. Pacheco, presented at the 1994 Optical Society of America Annual Meeting, Dallas, Texas, October 2–7.

T. W. Hänsch, “Application of dye lasers,” in Dye Lasers, F. P. Schafer, ed., Vol. 1 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), pp. 194–258.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: BS1, BS2, beam splitters; L1–L3, lenses. F, longpass optical filter; P1, P2, polarizers; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Spectrum of the light emitted in the backscattering direction obtained with an optical multichannel analyzer. The peak at the probe wavelength, 591 nm, is amplified by 2.8 when the sample is pumped with 4.5 mJ of 532-nm radiation. The inset shows more clearly the region around the 591-nm peak for the two cases of no pumping and 4.5-mJ pumping.

Fig. 3
Fig. 3

Comparison between the line shapes of the backscattering cones with and without pumping. The signals were scaled and plotted to have equal background levels. The narrower line shape is the signal for a pumping energy of 4.5 mJ, corresponding to an amplification of 2.8, and the wider line shape is the signal without pumping. The dashed curves are fits to the experimental signals.

Fig. 4
Fig. 4

Width of the cone (FWHM), represented by squares, and enhancement factor (Ipeak/Ibackground), represented by filled circles, as functions of the amplification. The solid curve is a fit by the model of Zyuzin.

Metrics