Abstract

Experimental demonstration of the steering of an optical vortex soliton by the superposition of a weak coherent background field is presented. A model to account for vortex motion is derived, and its validity is verified experimentally and numerically.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Snyder, L. Poladian, D. J. Mitchell, Opt. Lett. 17, 789 (1992).
    [CrossRef] [PubMed]
  2. G. A. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
    [CrossRef] [PubMed]
  3. G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
    [CrossRef]
  4. V. Tikhonenko, N. N. Akhmediev, Opt. Commun. 126, 108 (1996).
    [CrossRef]
  5. R. de la Fuente, A. Barthelemy, C. Froehly, Opt. Lett. 16, 793 (1991).
    [CrossRef] [PubMed]
  6. B. Luther-Davies, X. Yang, Opt. Lett. 17, 1755 (1992).
    [CrossRef] [PubMed]
  7. B. Luther-Davies, R. Powles, V. Tikhonenko, Opt. Lett. 19, 1816 (1994).
    [CrossRef] [PubMed]
  8. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
    [CrossRef]
  9. A. W. Snyder, D. J. Mitchell, B. Luther-Davies, J. Opt. Soc. Am. B 10, 2341 (1993).
    [CrossRef]
  10. Yu. S. Kivshar, X. Yang, Opt. Commun. 107, 93 (1994).
    [CrossRef]
  11. Explicit calculation of this function can be carried out for some limits and for the Kerr medium by the method of the matched asymptotics; see, e.g., J. C. Neu, Phys. D 43, 385 (1990); L. M. Pismen, J. Rubinstein, Phys. D 47, 353 (1991). For example, in the Kerr case we have C = ln(a|Fr|2/Ib)|r=R.
    [CrossRef]
  12. G. Indebetouw, J. Mod. Opt. 40, 73 (1993).
    [CrossRef]
  13. V. Yu. Bazhenov, M. V. Vasnetsov, M. S. Soskin, JETP Lett. 52, 429 (1990).

1996 (1)

V. Tikhonenko, N. N. Akhmediev, Opt. Commun. 126, 108 (1996).
[CrossRef]

1994 (2)

1993 (3)

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

A. W. Snyder, D. J. Mitchell, B. Luther-Davies, J. Opt. Soc. Am. B 10, 2341 (1993).
[CrossRef]

G. Indebetouw, J. Mod. Opt. 40, 73 (1993).
[CrossRef]

1992 (4)

B. Luther-Davies, X. Yang, Opt. Lett. 17, 1755 (1992).
[CrossRef] [PubMed]

A. W. Snyder, L. Poladian, D. J. Mitchell, Opt. Lett. 17, 789 (1992).
[CrossRef] [PubMed]

G. A. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
[CrossRef]

1991 (1)

1990 (2)

Explicit calculation of this function can be carried out for some limits and for the Kerr medium by the method of the matched asymptotics; see, e.g., J. C. Neu, Phys. D 43, 385 (1990); L. M. Pismen, J. Rubinstein, Phys. D 47, 353 (1991). For example, in the Kerr case we have C = ln(a|Fr|2/Ib)|r=R.
[CrossRef]

V. Yu. Bazhenov, M. V. Vasnetsov, M. S. Soskin, JETP Lett. 52, 429 (1990).

Akhmediev, N. N.

V. Tikhonenko, N. N. Akhmediev, Opt. Commun. 126, 108 (1996).
[CrossRef]

Barthelemy, A.

Basistiy, I. V.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

de la Fuente, R.

Firth, W. J.

G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
[CrossRef]

Froehly, C.

Indebetouw, G.

G. Indebetouw, J. Mod. Opt. 40, 73 (1993).
[CrossRef]

Kivshar, Yu. S.

Yu. S. Kivshar, X. Yang, Opt. Commun. 107, 93 (1994).
[CrossRef]

Law, C. T.

G. A. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Luther-Davies, B.

McDonald, G. S.

G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
[CrossRef]

Mitchell, D. J.

Neu, J. C.

Explicit calculation of this function can be carried out for some limits and for the Kerr medium by the method of the matched asymptotics; see, e.g., J. C. Neu, Phys. D 43, 385 (1990); L. M. Pismen, J. Rubinstein, Phys. D 47, 353 (1991). For example, in the Kerr case we have C = ln(a|Fr|2/Ib)|r=R.
[CrossRef]

Poladian, L.

Powles, R.

Snyder, A. W.

Soskin, M. S.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

V. Yu. Bazhenov, M. V. Vasnetsov, M. S. Soskin, JETP Lett. 52, 429 (1990).

Swartzlander, G. A.

G. A. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Syed, K. S.

G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
[CrossRef]

Tikhonenko, V.

Vasnetsov, M. V.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

V. Yu. Bazhenov, M. V. Vasnetsov, M. S. Soskin, JETP Lett. 52, 429 (1990).

Yang, X.

Yu. Bazhenov, V.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

V. Yu. Bazhenov, M. V. Vasnetsov, M. S. Soskin, JETP Lett. 52, 429 (1990).

J. Mod. Opt. (1)

G. Indebetouw, J. Mod. Opt. 40, 73 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

V. Yu. Bazhenov, M. V. Vasnetsov, M. S. Soskin, JETP Lett. 52, 429 (1990).

Opt. Commun. (4)

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

Yu. S. Kivshar, X. Yang, Opt. Commun. 107, 93 (1994).
[CrossRef]

G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
[CrossRef]

V. Tikhonenko, N. N. Akhmediev, Opt. Commun. 126, 108 (1996).
[CrossRef]

Opt. Lett. (4)

Phys. D (1)

Explicit calculation of this function can be carried out for some limits and for the Kerr medium by the method of the matched asymptotics; see, e.g., J. C. Neu, Phys. D 43, 385 (1990); L. M. Pismen, J. Rubinstein, Phys. D 47, 353 (1991). For example, in the Kerr case we have C = ln(a|Fr|2/Ib)|r=R.
[CrossRef]

Phys. Rev. Lett. (1)

G. A. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Intensity distributions at the output of the nonlinear cell for detuning of −0.9 GHz. The position of the vortex in (a) and (b) was controlled by translation of the vortex mask. (c) The intensity profile on a line passing through the vortex cores in both (a) (solid curve) and (b) (dashed curve).

Fig. 2
Fig. 2

Plot of the radial output position of the vortex with respect to its input position for a variety of nonlinearities, as indicated in the legend.

Fig. 3
Fig. 3

Intensity distributions of the interference between a vortex and a low-intensity coherent field. (a) The input distribution and (b) the output after self-defocusing propagation (cell temperature 70 °C, detuning −0.5 GHz). (c) and (d) correspond to (a) and (b), except that the weak field has been retarded by π. The lines marked on the images indicate fixed absolute positions on the cell windows and illustrate the negligible change in the input vortex position compared with displacements in the output plane. The outputs window is 1.6 mm × 1.5 mm, and the input images are to this scale.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 ik 0 n 0 ( E / z ) + 2 E + f ( I ) E = 0 ,
2 ik 0 n 0 ( υ / z ) + 2 υ + υ [ f ( I b | υ | 2 ) f ( I b ) ] = υ · F ,
k 0 n 0 ( d R / d z ) = ( θ b + m 2 C ln I b ) | r = R ,
R ( z ) = [ w ( z ) / w ( 0 ) ] R ( 0 ) ,
θ ( z ) = θ ( 0 ) + mC k 0 n 0 0 z d ζ w 2 ( ζ ) ,

Metrics