Abstract

We have constructed an optical power limiter based on nonlinear induced scattering in a cell containing crushed glass and a mixture of acetone and carbon disulfide. For 30-ps-long laser pulses the transmitted energy saturates at a value of 6 μJ. We also present the results of a theoretical modeling study that shows how the operating characteristics of such a device can be optimized.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, L. W. Tutt, T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993), and references therein.
    [CrossRef]
  2. B. L. Justus, A. L. Huston, A. J. Campillo, Appl. Phys. Lett. 63, 1483 (1993).
    [CrossRef]
  3. B. L. Justus, A. J. Campillo, A. L. Huston, Opt. Lett. 19, 673 (1994).
    [CrossRef] [PubMed]
  4. An early example of research on this process is that of C. R. Guiliano, L. D. Hess, IEEE J. Quantum Electron. 3, 358 (1967).
    [CrossRef]
  5. L. W. Tutt, A. Kost, Nature (London), 356, 225 (1992).
    [CrossRef]
  6. D. G. McLean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, T. Pottenger, Opt. Lett. 18, 858 (1993).
    [CrossRef] [PubMed]
  7. J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
    [CrossRef]
  8. C. Christiansen, Ann. Phys. Chem. 23, 298 (1884).
  9. Lord Rayleigh, Mag. Phil. 20, 358 (1885).
    [CrossRef]
  10. E. D. McAlister, Smithsonian Misc. Collect. 93, 1 (1935).
  11. R. B. Barnes, L. G. Bonner, Phys. Rev. 49, 732 (1936).
    [CrossRef]
  12. D. Redfield, R. L. Baum, J. Opt. Soc. Am. 51, 184 (1961).
    [CrossRef]
  13. N. George, “Light rejection band filter,” U.S. patent3,458,249 (July29, 1969).
  14. K. Balasubramanian, M. R. Jacobson, H. A. Macleod, Appl. Opt. 31, 1574 (1992).
    [CrossRef] [PubMed]
  15. D. Milam, M. J. Weber, J. Appl. Phys. 47, 2497 (1976).
    [CrossRef]
  16. R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
    [CrossRef]
  17. P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
    [CrossRef]
  18. C. V. Raman, Proc. Indian Acad. Sci. Sect. A 29, 381 (1949).
  19. J. E. Sipe, “Theory of electromagnetic properties of resonant dielectric crystals,” Ph.D. dissertation (University of Toronto, Toronto, Canada, 1975).
  20. S. L. Jacques, Laser Biology Research Laboratory, University of Texas, Houston, Tex. 77030 (personal communication, 1996).
  21. K. M. Yoo, R. R. Alfano, Opt. Lett. 16, 1823 (1991).
    [CrossRef] [PubMed]
  22. G. B. Al’tshuler, V. S. Ermolaev, K. I. Krylov, A. A. Manenkiv, A. M. Prokhorov, J. Opt. Soc. Am. B 3, 660 (1986).
    [CrossRef]

1994

1993

See, for example, L. W. Tutt, T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993), and references therein.
[CrossRef]

B. L. Justus, A. L. Huston, A. J. Campillo, Appl. Phys. Lett. 63, 1483 (1993).
[CrossRef]

D. G. McLean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, T. Pottenger, Opt. Lett. 18, 858 (1993).
[CrossRef] [PubMed]

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

1992

1991

1986

1979

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

1977

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

1976

D. Milam, M. J. Weber, J. Appl. Phys. 47, 2497 (1976).
[CrossRef]

1967

An early example of research on this process is that of C. R. Guiliano, L. D. Hess, IEEE J. Quantum Electron. 3, 358 (1967).
[CrossRef]

1961

1949

C. V. Raman, Proc. Indian Acad. Sci. Sect. A 29, 381 (1949).

1936

R. B. Barnes, L. G. Bonner, Phys. Rev. 49, 732 (1936).
[CrossRef]

1935

E. D. McAlister, Smithsonian Misc. Collect. 93, 1 (1935).

1885

Lord Rayleigh, Mag. Phil. 20, 358 (1885).
[CrossRef]

1884

C. Christiansen, Ann. Phys. Chem. 23, 298 (1884).

Al’tshuler, G. B.

Alfano, R. R.

K. M. Yoo, R. R. Alfano, Opt. Lett. 16, 1823 (1991).
[CrossRef] [PubMed]

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Balasubramanian, K.

Barnes, R. B.

R. B. Barnes, L. G. Bonner, Phys. Rev. 49, 732 (1936).
[CrossRef]

Bartoli, F. J.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

Baum, R. L.

Boggess, T. F.

See, for example, L. W. Tutt, T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993), and references therein.
[CrossRef]

Bonner, L. G.

R. B. Barnes, L. G. Bonner, Phys. Rev. 49, 732 (1936).
[CrossRef]

Brandelik, D. M.

Brant, M. C.

Campillo, A. J.

B. L. Justus, A. J. Campillo, A. L. Huston, Opt. Lett. 19, 673 (1994).
[CrossRef] [PubMed]

B. L. Justus, A. L. Huston, A. J. Campillo, Appl. Phys. Lett. 63, 1483 (1993).
[CrossRef]

Christiansen, C.

C. Christiansen, Ann. Phys. Chem. 23, 298 (1884).

Ermolaev, V. S.

Fleitz, P. A.

George, N.

N. George, “Light rejection band filter,” U.S. patent3,458,249 (July29, 1969).

Guiliano, C. R.

An early example of research on this process is that of C. R. Guiliano, L. D. Hess, IEEE J. Quantum Electron. 3, 358 (1967).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

Hess, L. D.

An early example of research on this process is that of C. R. Guiliano, L. D. Hess, IEEE J. Quantum Electron. 3, 358 (1967).
[CrossRef]

Ho, P. P.

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Huston, A. L.

B. L. Justus, A. J. Campillo, A. L. Huston, Opt. Lett. 19, 673 (1994).
[CrossRef] [PubMed]

B. L. Justus, A. L. Huston, A. J. Campillo, Appl. Phys. Lett. 63, 1483 (1993).
[CrossRef]

Jacobson, M. R.

Jacques, S. L.

S. L. Jacques, Laser Biology Research Laboratory, University of Texas, Houston, Tex. 77030 (personal communication, 1996).

Justus, B. L.

B. L. Justus, A. J. Campillo, A. L. Huston, Opt. Lett. 19, 673 (1994).
[CrossRef] [PubMed]

B. L. Justus, A. L. Huston, A. J. Campillo, Appl. Phys. Lett. 63, 1483 (1993).
[CrossRef]

Kost, A.

L. W. Tutt, A. Kost, Nature (London), 356, 225 (1992).
[CrossRef]

Krylov, K. I.

Macleod, H. A.

Manenkiv, A. A.

McAlister, E. D.

E. D. McAlister, Smithsonian Misc. Collect. 93, 1 (1935).

McLean, D. G.

Milam, D.

D. Milam, M. J. Weber, J. Appl. Phys. 47, 2497 (1976).
[CrossRef]

Pong, R. G. S.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

Pottenger, T.

Prokhorov, A. M.

Raman, C. V.

C. V. Raman, Proc. Indian Acad. Sci. Sect. A 29, 381 (1949).

Rayleigh, Lord

Lord Rayleigh, Mag. Phil. 20, 358 (1885).
[CrossRef]

Redfield, D.

Shirk, J. S.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

Sipe, J. E.

J. E. Sipe, “Theory of electromagnetic properties of resonant dielectric crystals,” Ph.D. dissertation (University of Toronto, Toronto, Canada, 1975).

Snow, A. W.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

Sutherland, R. L.

Tutt, L. W.

See, for example, L. W. Tutt, T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993), and references therein.
[CrossRef]

L. W. Tutt, A. Kost, Nature (London), 356, 225 (1992).
[CrossRef]

Weber, M. J.

D. Milam, M. J. Weber, J. Appl. Phys. 47, 2497 (1976).
[CrossRef]

Yoo, K. M.

Ann. Phys. Chem.

C. Christiansen, Ann. Phys. Chem. 23, 298 (1884).

Appl. Opt.

Appl. Phys. Lett.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

B. L. Justus, A. L. Huston, A. J. Campillo, Appl. Phys. Lett. 63, 1483 (1993).
[CrossRef]

IEEE J. Quantum Electron.

An early example of research on this process is that of C. R. Guiliano, L. D. Hess, IEEE J. Quantum Electron. 3, 358 (1967).
[CrossRef]

J. Appl. Phys.

D. Milam, M. J. Weber, J. Appl. Phys. 47, 2497 (1976).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Mag. Phil.

Lord Rayleigh, Mag. Phil. 20, 358 (1885).
[CrossRef]

Nature (London)

L. W. Tutt, A. Kost, Nature (London), 356, 225 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev.

R. B. Barnes, L. G. Bonner, Phys. Rev. 49, 732 (1936).
[CrossRef]

Phys. Rev. A

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Proc. Indian Acad. Sci. Sect. A

C. V. Raman, Proc. Indian Acad. Sci. Sect. A 29, 381 (1949).

Prog. Quantum Electron.

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

See, for example, L. W. Tutt, T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993), and references therein.
[CrossRef]

Smithsonian Misc. Collect.

E. D. McAlister, Smithsonian Misc. Collect. 93, 1 (1935).

Other

N. George, “Light rejection band filter,” U.S. patent3,458,249 (July29, 1969).

J. E. Sipe, “Theory of electromagnetic properties of resonant dielectric crystals,” Ph.D. dissertation (University of Toronto, Toronto, Canada, 1975).

S. L. Jacques, Laser Biology Research Laboratory, University of Texas, Houston, Tex. 77030 (personal communication, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Nonlinear Christiansen filter of length L consisting of particles suspended in a solution. Light at the index-matched wavelength is transmitted if the incident intensity is low but is scattered for high input intensities.

Fig. 2
Fig. 2

Experimental data (circles) and theory (solid curve) for a 1-cm-thick Christiansen filter consisting of 100-μm glass particles in a solution of carbon disulfide and acetone. A frequency-doubled Nd:YAG laser pulse with a length of 30 ps was collimated to a diameter of 118 μm at the filter.

Fig. 3
Fig. 3

Modeling of the nonlinear Christiansen filter, assuming 1-ns pulses, a fixed 29-μm beam diameter, and filter thickness ranging from 1 cm (bottom curve) to 1 mm (top curve).

Fig. 4
Fig. 4

Modeling of the nonlinear Christiansen filter, assuming 1-ns pulses, a fixed filter thickness of 1 cm, and a beam diameter ranging from 105 μm (top curve) to 15 μm (bottom curve).

Fig. 5
Fig. 5

Modeling of the nonlinear Christiansen filter assuming 1-ns pulses and the beam diameter optimized for each filter thickness, which ranges from 0.9 mm (top curve) to 0.3 mm (bottom curve). Shown are (a) output energy versus input energy and (b) fractional transmission versus input energy.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α = f ( 1 f ) 4 π 2 d λ 0 2 ( n l n g ) 2 ,
α ( I ) = f ( 1 f ) 4 π 2 d λ 0 2 [ n 2 ( l ) I ] 2 .
d I / d z = α ( I ) I .
L = 2 π ( d 2 / λ ) .

Metrics