Abstract

Optical limiting of nanosecond and picosecond laser pulses through millimeter-length isotropic liquid-crystal-cored fiber structures is reported. Low limiting threshold and clamped transmitted outputs are observed. The underlying nonlinear mechanisms are nonlinear photoabsorptions and scattering and lossy waveguiding caused by laser-induced thermal-density index fluctuations.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, R. Crane, K. Lewis, E. V. Stryland, M. Khoshnevisan, eds., Materials for Optical Limiting, Vol. 374 of Materials Research Society Proceedings (Materials Research Society, Pittsburgh, Pa., 1995).
  2. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley Interscience, New York, 1994); see also I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
    [CrossRef]
  3. M. J. Soileau, E. W. Van Stryland, G. Guha, E. J. Sharp, G. L. Wood, J. L. W. Pohlman, Mol. Cryst. Liq. Cryst. 143, 139 (1987).
    [CrossRef]
  4. I. C. Khoo, H. Li, J. Appl. Phys. B 59, 573 (1994); I. C. Khoo, H. Li, P. G. LoPresti, Y. Liang, Opt. Lett. 19, 530 (1994).
    [CrossRef] [PubMed]
  5. I. C. Khoo, R. R. Michael, P. Y. Yan, IEEE J. Quantum Electron. QE-23, 1344 (1987); see also Ref. 2.
    [CrossRef]
  6. Q. Tang, Z. Yang, Appl. Opt. 31, 6011 (1992).
    [CrossRef] [PubMed]
  7. I. C. Khoo, Mol. Cryst. Liq. Cryst. 207, 317 (1991).
    [CrossRef]
  8. F. W. Deeg, M. D. Feyer, J. Chem. Phys. 91, 2269 (1989); H. J. Eichler, R. Macdonald, B. Trosken, Mol. Cryst. Liq. Cryst. 231, 1 (1993); see also Ref. 2 for the absorption spectra of various liquid crystals.
    [CrossRef]
  9. See, for example, D. G. McLean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, T. Pottenger, Opt. Lett. 18, 858 (1993); see also B. L. Justus, Z. H. Kafafi, A. L. Huston, Opt. Lett. 18, 1603 (1993).
    [CrossRef] [PubMed]
  10. See, for example, J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
    [CrossRef]

1994 (1)

I. C. Khoo, H. Li, J. Appl. Phys. B 59, 573 (1994); I. C. Khoo, H. Li, P. G. LoPresti, Y. Liang, Opt. Lett. 19, 530 (1994).
[CrossRef] [PubMed]

1993 (2)

1992 (1)

1991 (1)

I. C. Khoo, Mol. Cryst. Liq. Cryst. 207, 317 (1991).
[CrossRef]

1989 (1)

F. W. Deeg, M. D. Feyer, J. Chem. Phys. 91, 2269 (1989); H. J. Eichler, R. Macdonald, B. Trosken, Mol. Cryst. Liq. Cryst. 231, 1 (1993); see also Ref. 2 for the absorption spectra of various liquid crystals.
[CrossRef]

1987 (2)

I. C. Khoo, R. R. Michael, P. Y. Yan, IEEE J. Quantum Electron. QE-23, 1344 (1987); see also Ref. 2.
[CrossRef]

M. J. Soileau, E. W. Van Stryland, G. Guha, E. J. Sharp, G. L. Wood, J. L. W. Pohlman, Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Bartoli, F. J.

See, for example, J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

Brandelik, D. M.

Brant, M. C.

Deeg, F. W.

F. W. Deeg, M. D. Feyer, J. Chem. Phys. 91, 2269 (1989); H. J. Eichler, R. Macdonald, B. Trosken, Mol. Cryst. Liq. Cryst. 231, 1 (1993); see also Ref. 2 for the absorption spectra of various liquid crystals.
[CrossRef]

Feyer, M. D.

F. W. Deeg, M. D. Feyer, J. Chem. Phys. 91, 2269 (1989); H. J. Eichler, R. Macdonald, B. Trosken, Mol. Cryst. Liq. Cryst. 231, 1 (1993); see also Ref. 2 for the absorption spectra of various liquid crystals.
[CrossRef]

Fleitz, P. A.

Guha, G.

M. J. Soileau, E. W. Van Stryland, G. Guha, E. J. Sharp, G. L. Wood, J. L. W. Pohlman, Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Khoo, I. C.

I. C. Khoo, H. Li, J. Appl. Phys. B 59, 573 (1994); I. C. Khoo, H. Li, P. G. LoPresti, Y. Liang, Opt. Lett. 19, 530 (1994).
[CrossRef] [PubMed]

I. C. Khoo, Mol. Cryst. Liq. Cryst. 207, 317 (1991).
[CrossRef]

I. C. Khoo, R. R. Michael, P. Y. Yan, IEEE J. Quantum Electron. QE-23, 1344 (1987); see also Ref. 2.
[CrossRef]

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley Interscience, New York, 1994); see also I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

Li, H.

I. C. Khoo, H. Li, J. Appl. Phys. B 59, 573 (1994); I. C. Khoo, H. Li, P. G. LoPresti, Y. Liang, Opt. Lett. 19, 530 (1994).
[CrossRef] [PubMed]

McLean, D. G.

Michael, R. R.

I. C. Khoo, R. R. Michael, P. Y. Yan, IEEE J. Quantum Electron. QE-23, 1344 (1987); see also Ref. 2.
[CrossRef]

Pohlman, J. L. W.

M. J. Soileau, E. W. Van Stryland, G. Guha, E. J. Sharp, G. L. Wood, J. L. W. Pohlman, Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Pong, R. G. S.

See, for example, J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

Pottenger, T.

Sharp, E. J.

M. J. Soileau, E. W. Van Stryland, G. Guha, E. J. Sharp, G. L. Wood, J. L. W. Pohlman, Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Shirk, J. S.

See, for example, J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

Snow, A. W.

See, for example, J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

Soileau, M. J.

M. J. Soileau, E. W. Van Stryland, G. Guha, E. J. Sharp, G. L. Wood, J. L. W. Pohlman, Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Sutherland, R. L.

Tang, Q.

Van Stryland, E. W.

M. J. Soileau, E. W. Van Stryland, G. Guha, E. J. Sharp, G. L. Wood, J. L. W. Pohlman, Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Wood, G. L.

M. J. Soileau, E. W. Van Stryland, G. Guha, E. J. Sharp, G. L. Wood, J. L. W. Pohlman, Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Yan, P. Y.

I. C. Khoo, R. R. Michael, P. Y. Yan, IEEE J. Quantum Electron. QE-23, 1344 (1987); see also Ref. 2.
[CrossRef]

Yang, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

See, for example, J. S. Shirk, R. G. S. Pong, F. J. Bartoli, A. W. Snow, Appl. Phys. Lett. 63, 1880 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. C. Khoo, R. R. Michael, P. Y. Yan, IEEE J. Quantum Electron. QE-23, 1344 (1987); see also Ref. 2.
[CrossRef]

J. Appl. Phys. B (1)

I. C. Khoo, H. Li, J. Appl. Phys. B 59, 573 (1994); I. C. Khoo, H. Li, P. G. LoPresti, Y. Liang, Opt. Lett. 19, 530 (1994).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

F. W. Deeg, M. D. Feyer, J. Chem. Phys. 91, 2269 (1989); H. J. Eichler, R. Macdonald, B. Trosken, Mol. Cryst. Liq. Cryst. 231, 1 (1993); see also Ref. 2 for the absorption spectra of various liquid crystals.
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

I. C. Khoo, Mol. Cryst. Liq. Cryst. 207, 317 (1991).
[CrossRef]

M. J. Soileau, E. W. Van Stryland, G. Guha, E. J. Sharp, G. L. Wood, J. L. W. Pohlman, Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Opt. Lett. (1)

Other (2)

See, for example, R. Crane, K. Lewis, E. V. Stryland, M. Khoshnevisan, eds., Materials for Optical Limiting, Vol. 374 of Materials Research Society Proceedings (Materials Research Society, Pittsburgh, Pa., 1995).

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley Interscience, New York, 1994); see also I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic depiction of an optical imaging system with a fiber array in an intermediate focal plane. The incident laser is focused to a spot size comparable with the diameter of a constituent fiber. The nonlinear core material limits the laser pulse transmission through a variety of nonlinear-optical processes. (b) Photograph of the resolution chart transmitted by the LC fiber array in a 1× telescope with f/5 optics. Array thickness, 3 mm; fiber core diameter, 10 μm; core material, C60-doped ILC.

Fig. 2
Fig. 2

Absorption spectrum of an LC-X doped ILC; the spike near 300 nm is due to the ILC.

Fig. 3
Fig. 3

Output versus input nanosecond laser pulse energies through various isotropic LC-cored fibers. Dopant concentration by weight: LC-X, 10%; C60, 0.01%.

Fig. 4
Fig. 4

Output versus input energy plot of the LC-X-doped ILC-cored fiber for nanosecond laser pulses. a, b, Fiber (length, 5 mm; core diameter, 30 μm). c, d, Bulk cell (5 mm thick).

Fig. 5
Fig. 5

Plots of the transmission and output energy versus the input picosecond laser pulse energy through a LC-X + LC-cored fiber. Fiber length, 5 mm; core diameter, 30 μm. Solid curve, theoretical fit with two-photon absorption.

Metrics