Abstract

We have investigated the temporal dynamics of the output polarization of a dye microlaser operating in a transient regime, i.e., under femtosecond excitation. In these conditions the dipole angular diffusion has an important role in the formation of the microlaser pulse, as is shown in a theoretical model. By performing the experiment for different values of the microcavity length and varying the polarization angle, we measured threshold and buildup time of the microlaser and compared the results obtained with two dye solutions of different viscosity. The agreement between theory and experimental results is adequate.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Xiaomei Wang, A. Linke, G. Devlin, H. Yokoyama, Phys. Rev. A 47, R2489 (1993).
  2. P. Mataloni, A. Aiello, D. Murra, F. De Martini, Appl. Phys. Lett. 65, 1891 (1994).
    [CrossRef]
  3. A. Aiello, F. De Martini, M. Giangrasso, P. Mataloni, Quantum Semiclass. Opt. 7, 677 (1995).
    [CrossRef]
  4. F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. (to be published).
  5. B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976), p. 143.
  6. A. Aiello, F. De Martini, M. Marrocco, P. Mataloni, Opt. Lett. 20, 1492 (1995).
    [CrossRef] [PubMed]
  7. G. Bjork, H. Heitmann, Y. Yamamoto, Phys. Rev. A 47, 4451 (1993).
    [CrossRef] [PubMed]
  8. C. H. de Brito Cruz, R. L. Fork, W. H. Knox, C. V. Shank, Chem. Phys. Lett. 32, 341 (1986).
    [CrossRef]
  9. The ultrahigh-reflectivity mirrors used in the present experiment were developed by PMS Electro-Optics, Boulder, Colo.
  10. F. De Martini, F. Cairo, P. Mataloni, F. Verzeg-nassi, Phys. Rev. A 46, 4220 (1992).
    [CrossRef] [PubMed]

1995

A. Aiello, F. De Martini, M. Giangrasso, P. Mataloni, Quantum Semiclass. Opt. 7, 677 (1995).
[CrossRef]

A. Aiello, F. De Martini, M. Marrocco, P. Mataloni, Opt. Lett. 20, 1492 (1995).
[CrossRef] [PubMed]

1994

P. Mataloni, A. Aiello, D. Murra, F. De Martini, Appl. Phys. Lett. 65, 1891 (1994).
[CrossRef]

1993

R. Xiaomei Wang, A. Linke, G. Devlin, H. Yokoyama, Phys. Rev. A 47, R2489 (1993).

G. Bjork, H. Heitmann, Y. Yamamoto, Phys. Rev. A 47, 4451 (1993).
[CrossRef] [PubMed]

1992

F. De Martini, F. Cairo, P. Mataloni, F. Verzeg-nassi, Phys. Rev. A 46, 4220 (1992).
[CrossRef] [PubMed]

1986

C. H. de Brito Cruz, R. L. Fork, W. H. Knox, C. V. Shank, Chem. Phys. Lett. 32, 341 (1986).
[CrossRef]

Aiello, A.

A. Aiello, F. De Martini, M. Giangrasso, P. Mataloni, Quantum Semiclass. Opt. 7, 677 (1995).
[CrossRef]

A. Aiello, F. De Martini, M. Marrocco, P. Mataloni, Opt. Lett. 20, 1492 (1995).
[CrossRef] [PubMed]

P. Mataloni, A. Aiello, D. Murra, F. De Martini, Appl. Phys. Lett. 65, 1891 (1994).
[CrossRef]

Berne, B. J.

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976), p. 143.

Bjork, G.

G. Bjork, H. Heitmann, Y. Yamamoto, Phys. Rev. A 47, 4451 (1993).
[CrossRef] [PubMed]

Cairo, F.

F. De Martini, F. Cairo, P. Mataloni, F. Verzeg-nassi, Phys. Rev. A 46, 4220 (1992).
[CrossRef] [PubMed]

de Brito Cruz, C. H.

C. H. de Brito Cruz, R. L. Fork, W. H. Knox, C. V. Shank, Chem. Phys. Lett. 32, 341 (1986).
[CrossRef]

De Martini, F.

A. Aiello, F. De Martini, M. Marrocco, P. Mataloni, Opt. Lett. 20, 1492 (1995).
[CrossRef] [PubMed]

A. Aiello, F. De Martini, M. Giangrasso, P. Mataloni, Quantum Semiclass. Opt. 7, 677 (1995).
[CrossRef]

P. Mataloni, A. Aiello, D. Murra, F. De Martini, Appl. Phys. Lett. 65, 1891 (1994).
[CrossRef]

F. De Martini, F. Cairo, P. Mataloni, F. Verzeg-nassi, Phys. Rev. A 46, 4220 (1992).
[CrossRef] [PubMed]

F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. (to be published).

Devlin, G.

R. Xiaomei Wang, A. Linke, G. Devlin, H. Yokoyama, Phys. Rev. A 47, R2489 (1993).

Di Giuseppe, G.

F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. (to be published).

Fork, R. L.

C. H. de Brito Cruz, R. L. Fork, W. H. Knox, C. V. Shank, Chem. Phys. Lett. 32, 341 (1986).
[CrossRef]

Giangrasso, M.

A. Aiello, F. De Martini, M. Giangrasso, P. Mataloni, Quantum Semiclass. Opt. 7, 677 (1995).
[CrossRef]

Heitmann, H.

G. Bjork, H. Heitmann, Y. Yamamoto, Phys. Rev. A 47, 4451 (1993).
[CrossRef] [PubMed]

Knox, W. H.

C. H. de Brito Cruz, R. L. Fork, W. H. Knox, C. V. Shank, Chem. Phys. Lett. 32, 341 (1986).
[CrossRef]

Linke, A.

R. Xiaomei Wang, A. Linke, G. Devlin, H. Yokoyama, Phys. Rev. A 47, R2489 (1993).

Marrocco, M.

A. Aiello, F. De Martini, M. Marrocco, P. Mataloni, Opt. Lett. 20, 1492 (1995).
[CrossRef] [PubMed]

F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. (to be published).

Mataloni, P.

A. Aiello, F. De Martini, M. Giangrasso, P. Mataloni, Quantum Semiclass. Opt. 7, 677 (1995).
[CrossRef]

A. Aiello, F. De Martini, M. Marrocco, P. Mataloni, Opt. Lett. 20, 1492 (1995).
[CrossRef] [PubMed]

P. Mataloni, A. Aiello, D. Murra, F. De Martini, Appl. Phys. Lett. 65, 1891 (1994).
[CrossRef]

F. De Martini, F. Cairo, P. Mataloni, F. Verzeg-nassi, Phys. Rev. A 46, 4220 (1992).
[CrossRef] [PubMed]

Murra, D.

P. Mataloni, A. Aiello, D. Murra, F. De Martini, Appl. Phys. Lett. 65, 1891 (1994).
[CrossRef]

Pecora, R.

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976), p. 143.

Shank, C. V.

C. H. de Brito Cruz, R. L. Fork, W. H. Knox, C. V. Shank, Chem. Phys. Lett. 32, 341 (1986).
[CrossRef]

Verzeg-nassi, F.

F. De Martini, F. Cairo, P. Mataloni, F. Verzeg-nassi, Phys. Rev. A 46, 4220 (1992).
[CrossRef] [PubMed]

Xiaomei Wang, R.

R. Xiaomei Wang, A. Linke, G. Devlin, H. Yokoyama, Phys. Rev. A 47, R2489 (1993).

Yamamoto, Y.

G. Bjork, H. Heitmann, Y. Yamamoto, Phys. Rev. A 47, 4451 (1993).
[CrossRef] [PubMed]

Yokoyama, H.

R. Xiaomei Wang, A. Linke, G. Devlin, H. Yokoyama, Phys. Rev. A 47, R2489 (1993).

Appl. Phys. Lett.

P. Mataloni, A. Aiello, D. Murra, F. De Martini, Appl. Phys. Lett. 65, 1891 (1994).
[CrossRef]

Chem. Phys. Lett.

C. H. de Brito Cruz, R. L. Fork, W. H. Knox, C. V. Shank, Chem. Phys. Lett. 32, 341 (1986).
[CrossRef]

Opt. Lett.

Phys. Rev. A

G. Bjork, H. Heitmann, Y. Yamamoto, Phys. Rev. A 47, 4451 (1993).
[CrossRef] [PubMed]

R. Xiaomei Wang, A. Linke, G. Devlin, H. Yokoyama, Phys. Rev. A 47, R2489 (1993).

F. De Martini, F. Cairo, P. Mataloni, F. Verzeg-nassi, Phys. Rev. A 46, 4220 (1992).
[CrossRef] [PubMed]

Quantum Semiclass. Opt.

A. Aiello, F. De Martini, M. Giangrasso, P. Mataloni, Quantum Semiclass. Opt. 7, 677 (1995).
[CrossRef]

Other

F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. (to be published).

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976), p. 143.

The ultrahigh-reflectivity mirrors used in the present experiment were developed by PMS Electro-Optics, Boulder, Colo.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. BS, Beam splitter.

Fig. 2
Fig. 2

Ratio between the two threshold energies corresponding to the pump polarization along the x and y axes as a function of the cavity order n. The dashed curve represents the numerical simulation.

Fig. 3
Fig. 3

Microlaser buildup time versus polarization angle for a cavity (d = 36 μm) filled with dye solutions of ethylene glycol (E.G.) and acetone. Continuous curve, theoretical behavior for ethylene glycol; dashed curves, theoretical behavior for acetone: (a) Ni/Nth = 10, (b) Ni/Nth = 20.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d m x d t = m x [ Γ n , n η 0 2 π N ( θ ) cos 2 θ d θ 1 τ ph ] + Γ n η N ( 0 ° ) ,
d m y d t = m y [ Γ n , n η 0 2 π N ( θ ) sin 2 θ d θ 1 τ ph ] + Γ n η N ( 90 ° ) ,
d N ( θ ) d t = Γ n , n η N ( θ ) ( m x cos 2 θ + m y sin 2 θ ) N ( θ ) Γ n η + D [ d 2 N ( θ ) d θ 2 ] .

Metrics