Abstract

We show that an intense linearly polarized pulse propagating in a nonbirefringent fiber squeezes the perpendicularly polarized vacuum fluctuations through cross-phase modulation. Unlike the generation of squeezed vacuum through self-phase modulation, the mechanism discussed here does not require the use of a nonlinear Sagnac interferometer to separate the pump from the squeezed vacuum.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Giacobino, C. Fabre, eds., feature on squeezed light generation, Appl. Phys. B55, 190–303 (1992).
    [CrossRef]
  2. M. Xiao, L. A. Wu, H. J. Kimble, Phys. Rev. Lett. 59, 278 (1987).
    [CrossRef] [PubMed]
  3. E. S. Polzik, J. Carri, H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
    [CrossRef] [PubMed]
  4. K. Bergman, H. A. Haus, Opt. Lett. 16, 663 (1991);K. Bergman, C. R. Doerr, H. A. Haus, M. Shirasaki, Opt. Lett. 18, 643 (1993);K. Bergman, H. A. Haus, E. P. Ippen, M. Shirasaki, Opt. Lett. 19, 290 (1994).
    [CrossRef] [PubMed]
  5. M. Shirasaki, H. A. Haus, J. Opt. Soc. Am. B 7, 30 (1990).
    [CrossRef]
  6. X. Zhang, M. K. Udo, S. T. Ho, in Quantum Electronics and Laser Science, Vol. 12 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 283.
  7. H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
    [CrossRef]
  8. A. Owyoung, R. W. Hellwarth, N. George, Phys. Rev. B 5, 628 (1972);R. W. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
    [CrossRef]
  9. C. R. Doerr, M. Shirasaki, H. A. Haus, F. J. Khatri, J. Opt. Soc. Am. B 11, 143 (1994).
    [CrossRef]
  10. 3M Technical Overview and Product Catalog.

1994

1992

E. S. Polzik, J. Carri, H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
[CrossRef] [PubMed]

1991

1990

1987

M. Xiao, L. A. Wu, H. J. Kimble, Phys. Rev. Lett. 59, 278 (1987).
[CrossRef] [PubMed]

1985

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[CrossRef]

1972

A. Owyoung, R. W. Hellwarth, N. George, Phys. Rev. B 5, 628 (1972);R. W. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Bergman, K.

Carri, J.

E. S. Polzik, J. Carri, H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
[CrossRef] [PubMed]

Doerr, C. R.

George, N.

A. Owyoung, R. W. Hellwarth, N. George, Phys. Rev. B 5, 628 (1972);R. W. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Haus, H. A.

Hellwarth, R. W.

A. Owyoung, R. W. Hellwarth, N. George, Phys. Rev. B 5, 628 (1972);R. W. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Ho, S. T.

X. Zhang, M. K. Udo, S. T. Ho, in Quantum Electronics and Laser Science, Vol. 12 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 283.

Khatri, F. J.

Kimble, H. J.

E. S. Polzik, J. Carri, H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
[CrossRef] [PubMed]

M. Xiao, L. A. Wu, H. J. Kimble, Phys. Rev. Lett. 59, 278 (1987).
[CrossRef] [PubMed]

Owyoung, A.

A. Owyoung, R. W. Hellwarth, N. George, Phys. Rev. B 5, 628 (1972);R. W. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Polzik, E. S.

E. S. Polzik, J. Carri, H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
[CrossRef] [PubMed]

Shirasaki, M.

Udo, M. K.

X. Zhang, M. K. Udo, S. T. Ho, in Quantum Electronics and Laser Science, Vol. 12 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 283.

Winful, H. G.

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[CrossRef]

Wu, L. A.

M. Xiao, L. A. Wu, H. J. Kimble, Phys. Rev. Lett. 59, 278 (1987).
[CrossRef] [PubMed]

Xiao, M.

M. Xiao, L. A. Wu, H. J. Kimble, Phys. Rev. Lett. 59, 278 (1987).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, M. K. Udo, S. T. Ho, in Quantum Electronics and Laser Science, Vol. 12 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 283.

Appl. Phys. Lett.

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. B

A. Owyoung, R. W. Hellwarth, N. George, Phys. Rev. B 5, 628 (1972);R. W. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Phys. Rev. Lett.

M. Xiao, L. A. Wu, H. J. Kimble, Phys. Rev. Lett. 59, 278 (1987).
[CrossRef] [PubMed]

E. S. Polzik, J. Carri, H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
[CrossRef] [PubMed]

Other

X. Zhang, M. K. Udo, S. T. Ho, in Quantum Electronics and Laser Science, Vol. 12 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 283.

3M Technical Overview and Product Catalog.

E. Giacobino, C. Fabre, eds., feature on squeezed light generation, Appl. Phys. B55, 190–303 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Proposed experiment for observation of polarization XPM squeezing. PBS, polarizing beam splitter

Fig. 2
Fig. 2

Nonlinear polarization rotation for (a) θπ/4 and (b) θ = π/2. In the first case, the signal (i.e., the y projection) is first deamplified before growing again. If deamplification occurs for θ > 0, it also occurs for θπ, with the nonlinear rotation being counterclockwise.

Fig. 3
Fig. 3

Quantum noise reduction of the cross-polarized modes as a function of fiber length. The input pump was chosen as A 0 ( τ ) = n 0 / 2 σ sech(τ/σ), with n0 = 2.8 × 109 and σ = 100 fs/1.763, corresponding to a peak power of ~5 kW at a wavelength of 1 μm. (a) β2 = 0, (b) β2 = 1 ps2/km, (c) β2 = −50 ps2/km. The initial pulse forms an optical soliton in case (c). The Kerr coefficient was chosen in all cases as κ = 6.2 × 10−7 ps/km.

Fig. 4
Fig. 4

Comparison of XPM and SPM squeezing for β2 = 10 ps2/km. All other parameters were chosen as in Fig. 3. The difference between the dashed curve and the XPM curve is the dispersion penalty discussed in the text.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A x z + i β 2 2 2 A x τ 2 = i κ | A x | 2 A x ,
A ^ y z + i β 2 2 2 A ^ y τ 2 = i κ 3 ( 2 | A x | 2 A ^ y + A x 2 A ^ y ) ,
A ^ y ( z , τ ) = exp [ i k | A 0 ( τ ) | 2 z ] { [ 1 i κ 3 | A 0 ( τ ) | 2 z ] × A ^ y ( 0 , τ ) + [ i κ 3 A 0 2 ( τ ) z ] A ^ y ( 0 , τ ) } .
A ^ x ( z , τ ) = exp [ i κ | A 0 ( τ ) | 2 z ] { [ 1 + i κ | A 0 ( τ ) | 2 z ] A ^ x ( 0 , τ ) + [ i κ A 0 2 ( τ ) z ] A ^ x ( 0 , τ ) } .

Metrics