Abstract

The acoustic effect significantly increases the timing jitter of solitons in communication lines. We calculate the correlation in near-neighbor soliton time shifts that result from the acoustic interaction and show that the acoustic effect can cause correlated errors that cannot be corrected with standard, simple error-correction codes such as the Hamming code.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, P. V. Mamyshev, M. J. Neubelt, Opt. Lett. 19, 704 (1994).
    [CrossRef] [PubMed]
  2. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. M. Prokhorov, Appl. Phys. B 54, 175 (1992);E. A. Golovchenko, A. N. Pilipetskii, J. Lightwave Technol. 12, 1502 (1994).
    [CrossRef]
  3. See, e.g., J. G. Proakis, Digital Communications (McGraw-Hill, New York, 1989), Chaps. 5 and 6, for a basic discussion of noise, intersymbol interference, error-control coding, and equalization.
  4. C. R. Menyuk, Opt. Lett. 20, 285 (1995);T. Georges, Electron. Lett. 31, 1174 (1995).
    [CrossRef] [PubMed]

1995 (1)

1994 (1)

1992 (1)

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. M. Prokhorov, Appl. Phys. B 54, 175 (1992);E. A. Golovchenko, A. N. Pilipetskii, J. Lightwave Technol. 12, 1502 (1994).
[CrossRef]

Dianov, E. M.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. M. Prokhorov, Appl. Phys. B 54, 175 (1992);E. A. Golovchenko, A. N. Pilipetskii, J. Lightwave Technol. 12, 1502 (1994).
[CrossRef]

Luchnikov, A. V.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. M. Prokhorov, Appl. Phys. B 54, 175 (1992);E. A. Golovchenko, A. N. Pilipetskii, J. Lightwave Technol. 12, 1502 (1994).
[CrossRef]

Mamyshev, P. V.

Menyuk, C. R.

Mollenauer, L. F.

Neubelt, M. J.

Pilipetskii, A. N.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. M. Prokhorov, Appl. Phys. B 54, 175 (1992);E. A. Golovchenko, A. N. Pilipetskii, J. Lightwave Technol. 12, 1502 (1994).
[CrossRef]

Proakis, J. G.

See, e.g., J. G. Proakis, Digital Communications (McGraw-Hill, New York, 1989), Chaps. 5 and 6, for a basic discussion of noise, intersymbol interference, error-control coding, and equalization.

Prokhorov, A. M.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. M. Prokhorov, Appl. Phys. B 54, 175 (1992);E. A. Golovchenko, A. N. Pilipetskii, J. Lightwave Technol. 12, 1502 (1994).
[CrossRef]

Appl. Phys. B (1)

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. M. Prokhorov, Appl. Phys. B 54, 175 (1992);E. A. Golovchenko, A. N. Pilipetskii, J. Lightwave Technol. 12, 1502 (1994).
[CrossRef]

Opt. Lett. (2)

Other (1)

See, e.g., J. G. Proakis, Digital Communications (McGraw-Hill, New York, 1989), Chaps. 5 and 6, for a basic discussion of noise, intersymbol interference, error-control coding, and equalization.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Correlation function for the acoustically induced timing jitter at a bit rate of 20 Gbits/s on two different time scales: (a) 0–25 ns, (b) 0–2.5 ns. Dots indicate the pulse positions.

Fig. 2
Fig. 2

Correlation between time shifts of neighboring solitons depending on the bit rate.

Fig. 3
Fig. 3

Evolution of the soliton maxima in one 12-bit word in our simulated bit stream. Our parameters are bit rate F = 20 Gbits/s, dispersion D = 0.25 ps/(nm km), and soliton width τ = 10 ps. The trajectories of the pulse maxima are shown by thick solid curves, and the grid indicates the boundaries of the time slots.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d ω d z = ω c d ( δ n ) d t | t = T .
d t i d z = ( δ Ω i ) λ 2 2 π c D ,
d ( δ Ω i ) d z = ω c l d ( δ n ) λ 2 d t | t i t i ,
f ( N ) = τ i τ i + N τ i τ i + N σ 2 ,
f ( N ) = l = 1 n d t | l T n d t | ( l + N ) T l = 1 ( n d t | l T ) 2 ,
σ = 4 . 8 D 2 F 1 / 2 τ z 2 ,
f 1 1 . 4 F ,

Metrics