Abstract

A new theoretical analysis of the interferometric polarization-mode dispersion (PMD) measurement predicts, in the limit of large PMD, a new relationship to the highly mode-coupled principal states model. This theory is confirmed by computer simulation of the ratio of the mean differential group delay (DGD) to the interferometric PMD. Jones matrix eigenanalysis and wavelength scanning with extrema counting are shown to measure the mean DGD independently of the optical source spectrum, whereas interferometrically measured PMD is shown to depend on the optical source spectrum as well as on the characteristics of the fiber to be measured.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Heffner, IEEE Photon. Technol. Lett. 4, 1066 (1992).
    [CrossRef]
  2. C. D. Poole, D. L. Favin, J. Lightwave Technol. 12, 917 (1994).
    [CrossRef]
  3. G. J. Foschini, C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
    [CrossRef]
  4. N. Gisin, R. Passy, J. P. Von der Weid, IEEE Photon. Technol. Lett. 6, 730 (1994).
    [CrossRef]
  5. N. Gisin, J. P. Von der Weid, J. P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
    [CrossRef]
  6. S. L. Shapiro, Ultrashort Light Pulses, Picosecond Techniques and Applications (Springer-Verlag, Berlin, 1982), Chap. 3, p. 83.
  7. B. L. Heffner, Opt. Commun. 115, 45 (1995).
    [CrossRef]
  8. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965), Chap. 9, p. 279.

1995 (1)

B. L. Heffner, Opt. Commun. 115, 45 (1995).
[CrossRef]

1994 (2)

C. D. Poole, D. L. Favin, J. Lightwave Technol. 12, 917 (1994).
[CrossRef]

N. Gisin, R. Passy, J. P. Von der Weid, IEEE Photon. Technol. Lett. 6, 730 (1994).
[CrossRef]

1992 (1)

B. L. Heffner, IEEE Photon. Technol. Lett. 4, 1066 (1992).
[CrossRef]

1991 (2)

N. Gisin, J. P. Von der Weid, J. P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
[CrossRef]

G. J. Foschini, C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Favin, D. L.

C. D. Poole, D. L. Favin, J. Lightwave Technol. 12, 917 (1994).
[CrossRef]

Foschini, G. J.

G. J. Foschini, C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Gisin, N.

N. Gisin, R. Passy, J. P. Von der Weid, IEEE Photon. Technol. Lett. 6, 730 (1994).
[CrossRef]

N. Gisin, J. P. Von der Weid, J. P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
[CrossRef]

Heffner, B. L.

B. L. Heffner, Opt. Commun. 115, 45 (1995).
[CrossRef]

B. L. Heffner, IEEE Photon. Technol. Lett. 4, 1066 (1992).
[CrossRef]

Papoulis, A.

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965), Chap. 9, p. 279.

Passy, R.

N. Gisin, R. Passy, J. P. Von der Weid, IEEE Photon. Technol. Lett. 6, 730 (1994).
[CrossRef]

Pellaux, J. P.

N. Gisin, J. P. Von der Weid, J. P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
[CrossRef]

Poole, C. D.

C. D. Poole, D. L. Favin, J. Lightwave Technol. 12, 917 (1994).
[CrossRef]

G. J. Foschini, C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Shapiro, S. L.

S. L. Shapiro, Ultrashort Light Pulses, Picosecond Techniques and Applications (Springer-Verlag, Berlin, 1982), Chap. 3, p. 83.

Von der Weid, J. P.

N. Gisin, R. Passy, J. P. Von der Weid, IEEE Photon. Technol. Lett. 6, 730 (1994).
[CrossRef]

N. Gisin, J. P. Von der Weid, J. P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. L. Heffner, IEEE Photon. Technol. Lett. 4, 1066 (1992).
[CrossRef]

N. Gisin, R. Passy, J. P. Von der Weid, IEEE Photon. Technol. Lett. 6, 730 (1994).
[CrossRef]

J. Lightwave Technol. (3)

N. Gisin, J. P. Von der Weid, J. P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
[CrossRef]

C. D. Poole, D. L. Favin, J. Lightwave Technol. 12, 917 (1994).
[CrossRef]

G. J. Foschini, C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Opt. Commun. (1)

B. L. Heffner, Opt. Commun. 115, 45 (1995).
[CrossRef]

Other (2)

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965), Chap. 9, p. 279.

S. L. Shapiro, Ultrashort Light Pulses, Picosecond Techniques and Applications (Springer-Verlag, Berlin, 1982), Chap. 3, p. 83.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Interferometric PMD measurement apparatus. p(t) is the ac photocurrent at the output of the interferometer. P1, P2, polarizers; BS, beam splitter.

Fig. 2
Fig. 2

(a) Mean-shifted transmitted power T(ω). (b) Photocurrent envelope (t).

Fig. 3
Fig. 3

Mean DGD 〈τ〉 divided by the interferometric PMD σ ˜ ε versus the PMD–bandwidth product σ ˜ ε Δ ω FWHM. Simulation of over 105 fibers results in a scatter plot. The traces shown join the means of the vertical slices of scatter plots constructed with three slightly different spectral shapes. The optical source spectra are shown in the insets, where 1 < ω < 1. The spectral shape and bandwidth both affect the correction needed to obtain the mean DGD. The lower scale accounts for use of a typical light-emitting diode source centered at 1550 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τ I = 2 σ I = 2 { t 2 I ( t ) d t I ( t ) d t [ t I ( t ) d t I ( t ) d t ] 2 } 1 / 2 .
H ( ω ) = Δ ω T ( η ) T ( η + ω ) d η = Δ ω R T T ( ω ) ,
σ h 2 = h ( t ) t 2 d t h ( t ) d t = H ( 0 ) H ( 0 ) ,
H ( 0 ) = Δ ω T 2 = Δ ω 12 .
f T ( T ) = 1 σ Ω ( π 2 ) 1 / 2 [ 1 erf ( 2 | T | σ Ω ) ] < T < ,
H ( 0 ) = Δ ω T 2 = Δ ω 6 σ Ω 2 .
τ 2 1 / 2 = 3 2 σ ε 0 . 866 σ ε ,
τ = ( 2 π ) 1 / 2 σ ε 0 . 789 σ ε ,

Metrics