Abstract

We propose a novel rotational (peristrophic) multiplexing method of hologram recording for parallel optical-feature extraction and report basic experimental results. The features to be extracted are line-segment orientations separated by 30°. The extracted features can be used for flexible pattern recognition.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Curtis, A. Pu, D. Psaltis, Opt. Lett. 19, 993 (1994).
    [CrossRef] [PubMed]
  2. D. Psaltis, A. Pu, Int. J. Optoelectron. Devices Technol. 10 (1995).
  3. T.-H. Chao, W. W. Stoner, Appl. Opt. 32, 1359 (1993).
    [CrossRef] [PubMed]
  4. A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
    [CrossRef]
  5. D. H. Hubel, T. N. Wiesel, Sci. Am. 241, 150 (1979).
    [CrossRef] [PubMed]
  6. K. Curtis, D. Psaltis, Appl. Opt. 31, 7425 (1992).
    [CrossRef] [PubMed]
  7. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chap. 7, p. 141.
  8. E. G. Paek, D. Psaltis, Opt. Eng. 26, 428 (1987).
  9. F. Fukushima, Biol. Cybern. 36, 193 (1980).
    [CrossRef] [PubMed]
  10. D. E. Rumelhart, J. L. McClellandPDP Research Group, Foundations, Vol 1 of Parallel Distributed Processing (MIT, Cambridge, Mass.1986), Chap. 8.
  11. S. Jutamulia, ed., Selected Papers on Optical Neural Networks, Vol. MS 96 of SPIE Milestone Series (SPIE Optical Engineering Press, Bellingham, Wash., 1994).
  12. J.-S. Jang, S.-G. Shin, S.-W. Yuk, S.-Y. Shin, S.-Y. Lee, Opt. Eng. 32, 80 (1993).
    [CrossRef]

1995 (1)

D. Psaltis, A. Pu, Int. J. Optoelectron. Devices Technol. 10 (1995).

1994 (1)

1993 (2)

T.-H. Chao, W. W. Stoner, Appl. Opt. 32, 1359 (1993).
[CrossRef] [PubMed]

J.-S. Jang, S.-G. Shin, S.-W. Yuk, S.-Y. Shin, S.-Y. Lee, Opt. Eng. 32, 80 (1993).
[CrossRef]

1992 (1)

1987 (1)

E. G. Paek, D. Psaltis, Opt. Eng. 26, 428 (1987).

1980 (1)

F. Fukushima, Biol. Cybern. 36, 193 (1980).
[CrossRef] [PubMed]

1979 (1)

D. H. Hubel, T. N. Wiesel, Sci. Am. 241, 150 (1979).
[CrossRef] [PubMed]

1964 (1)

A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

Chao, T.-H.

Curtis, K.

Fukushima, F.

F. Fukushima, Biol. Cybern. 36, 193 (1980).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chap. 7, p. 141.

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, Sci. Am. 241, 150 (1979).
[CrossRef] [PubMed]

Jang, J.-S.

J.-S. Jang, S.-G. Shin, S.-W. Yuk, S.-Y. Shin, S.-Y. Lee, Opt. Eng. 32, 80 (1993).
[CrossRef]

Lee, S.-Y.

J.-S. Jang, S.-G. Shin, S.-W. Yuk, S.-Y. Shin, S.-Y. Lee, Opt. Eng. 32, 80 (1993).
[CrossRef]

McClelland, J. L.

D. E. Rumelhart, J. L. McClellandPDP Research Group, Foundations, Vol 1 of Parallel Distributed Processing (MIT, Cambridge, Mass.1986), Chap. 8.

Paek, E. G.

E. G. Paek, D. Psaltis, Opt. Eng. 26, 428 (1987).

Psaltis, D.

D. Psaltis, A. Pu, Int. J. Optoelectron. Devices Technol. 10 (1995).

K. Curtis, A. Pu, D. Psaltis, Opt. Lett. 19, 993 (1994).
[CrossRef] [PubMed]

K. Curtis, D. Psaltis, Appl. Opt. 31, 7425 (1992).
[CrossRef] [PubMed]

E. G. Paek, D. Psaltis, Opt. Eng. 26, 428 (1987).

Pu, A.

D. Psaltis, A. Pu, Int. J. Optoelectron. Devices Technol. 10 (1995).

K. Curtis, A. Pu, D. Psaltis, Opt. Lett. 19, 993 (1994).
[CrossRef] [PubMed]

Rumelhart, D. E.

D. E. Rumelhart, J. L. McClellandPDP Research Group, Foundations, Vol 1 of Parallel Distributed Processing (MIT, Cambridge, Mass.1986), Chap. 8.

Shin, S.-G.

J.-S. Jang, S.-G. Shin, S.-W. Yuk, S.-Y. Shin, S.-Y. Lee, Opt. Eng. 32, 80 (1993).
[CrossRef]

Shin, S.-Y.

J.-S. Jang, S.-G. Shin, S.-W. Yuk, S.-Y. Shin, S.-Y. Lee, Opt. Eng. 32, 80 (1993).
[CrossRef]

Stoner, W. W.

VanderLugt, A.

A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, Sci. Am. 241, 150 (1979).
[CrossRef] [PubMed]

Yuk, S.-W.

J.-S. Jang, S.-G. Shin, S.-W. Yuk, S.-Y. Shin, S.-Y. Lee, Opt. Eng. 32, 80 (1993).
[CrossRef]

Appl. Opt. (2)

Biol. Cybern. (1)

F. Fukushima, Biol. Cybern. 36, 193 (1980).
[CrossRef] [PubMed]

IEEE Trans. Inf. Theory (1)

A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

Int. J. Optoelectron. Devices Technol. (1)

D. Psaltis, A. Pu, Int. J. Optoelectron. Devices Technol. 10 (1995).

Opt. Eng. (2)

E. G. Paek, D. Psaltis, Opt. Eng. 26, 428 (1987).

J.-S. Jang, S.-G. Shin, S.-W. Yuk, S.-Y. Shin, S.-Y. Lee, Opt. Eng. 32, 80 (1993).
[CrossRef]

Opt. Lett. (1)

Sci. Am. (1)

D. H. Hubel, T. N. Wiesel, Sci. Am. 241, 150 (1979).
[CrossRef] [PubMed]

Other (3)

D. E. Rumelhart, J. L. McClellandPDP Research Group, Foundations, Vol 1 of Parallel Distributed Processing (MIT, Cambridge, Mass.1986), Chap. 8.

S. Jutamulia, ed., Selected Papers on Optical Neural Networks, Vol. MS 96 of SPIE Milestone Series (SPIE Optical Engineering Press, Bellingham, Wash., 1994).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chap. 7, p. 141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Novel rotational multiplexing in hologram recording for parallel feature extraction. (b) Equivalent hologram recording method. (c) Experimental setup for feature extraction. SLM, spatial light modulator; PF, photopolymer film.

Fig. 2
Fig. 2

Features of oriented line segments to be extracted. From left, h1(x, y), h2(x, y),…, h6(x, y).

Fig. 3
Fig. 3

Photograph of cross-correlation peaks in the output plane and their cross-sectional intensity profiles when the input is a uniform plane-wave pattern. The ordinate and the abscissa in the graphs represent the light intensity in arbitrary units and the cross-section distance, respectively. The scale of the abscissa is enlarged ~5 times compared with that of the center photograph.

Fig. 4
Fig. 4

Examples of experimental results of feature extraction for various input patterns. See text for details.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h i * ( α x , β y ) g ( α , β ) d α d β = c i ( x , y ) ,

Metrics