Abstract

Analytical soliton solutions of the three-wave interaction equations are shown to exhibit high power conversion for a range of nonlinear materials with no satellite peaks and energy conversion close to 100%. Related numerical solutions that yield power conversion up to 10 times those of the initial waves with less than 3% energy in the small satellite peaks and high-energy efficiency are exhibited for KDP crystals; substantial compression of the fundamental pulses is observed in this case.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, R. Dragila, Phys. Rev. A 41, 5645 (1990).
    [CrossRef] [PubMed]
  2. A. Stabinis, G. Valiulis, E. A. Ibragimov, Opt. Commun. 86, 301 (1991).
    [CrossRef]
  3. Y. Wang, B. Luther-Davies, Y.-H. Chuang, R. S. Craxton, D. D. Meyerhofer, Opt. Lett. 16, 1862 (1991).
    [CrossRef] [PubMed]
  4. Y. Wang, B. Luther-Davies, Opt. Lett. 17, 1459 (1992).
    [CrossRef] [PubMed]
  5. C. Y. Chien, G. Korn, J. S. Coe, J. Squier, G. Mourou, R. S. Craxton, Opt. Lett. 20, 353 (1994).
    [CrossRef]
  6. R. Danelius, A. Dubietis, G. Valiulis, A. Piskarskas, Opt. Lett. 20, 2225 (1995).
    [CrossRef]
  7. V. E. Zakharov, S. V. Manakov, Sov. Phys. JETP 42, 842 (1976).
  8. D. J. Kaup, Stud. Appl. Math. 55, 9 (1976).
  9. L. Torner, C. R. Menyuk, W. E. Torruellas, G. I. Stegeman, Opt. Lett. 20, 13 (1995).
    [CrossRef] [PubMed]
  10. W. E. Torruellas, Z. Wang, L. Torner, G. I. Stegeman, Opt. Lett. 20, 1949 (1995).
    [CrossRef] [PubMed]

1995 (3)

1994 (1)

1992 (1)

1991 (2)

1990 (1)

Y. Wang, R. Dragila, Phys. Rev. A 41, 5645 (1990).
[CrossRef] [PubMed]

1976 (2)

V. E. Zakharov, S. V. Manakov, Sov. Phys. JETP 42, 842 (1976).

D. J. Kaup, Stud. Appl. Math. 55, 9 (1976).

Chien, C. Y.

Chuang, Y.-H.

Coe, J. S.

Craxton, R. S.

Danelius, R.

Dragila, R.

Y. Wang, R. Dragila, Phys. Rev. A 41, 5645 (1990).
[CrossRef] [PubMed]

Dubietis, A.

Ibragimov, E. A.

A. Stabinis, G. Valiulis, E. A. Ibragimov, Opt. Commun. 86, 301 (1991).
[CrossRef]

Kaup, D. J.

D. J. Kaup, Stud. Appl. Math. 55, 9 (1976).

Korn, G.

Luther-Davies, B.

Manakov, S. V.

V. E. Zakharov, S. V. Manakov, Sov. Phys. JETP 42, 842 (1976).

Menyuk, C. R.

Meyerhofer, D. D.

Mourou, G.

Piskarskas, A.

Squier, J.

Stabinis, A.

A. Stabinis, G. Valiulis, E. A. Ibragimov, Opt. Commun. 86, 301 (1991).
[CrossRef]

Stegeman, G. I.

Torner, L.

Torruellas, W. E.

Valiulis, G.

R. Danelius, A. Dubietis, G. Valiulis, A. Piskarskas, Opt. Lett. 20, 2225 (1995).
[CrossRef]

A. Stabinis, G. Valiulis, E. A. Ibragimov, Opt. Commun. 86, 301 (1991).
[CrossRef]

Wang, Y.

Wang, Z.

Zakharov, V. E.

V. E. Zakharov, S. V. Manakov, Sov. Phys. JETP 42, 842 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Typical soliton interaction.

Tables (2)

Tables Icon

Table 1 Soliton Regime in KDP Crystala

Tables Icon

Table 2 Numerical Results

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A 1 z + 1 v 1 A 1 t = i σ 1 A 3 A 2 * exp ( i Δ k z ) , A 2 z + 1 v 2 A 2 t = i σ 2 A 3 A 1 * exp ( i Δ k z ) , A 3 z + 1 v 3 A 3 t = i σ 3 A 1 A 2 exp ( i Δ k z )
A 1 ( t , z ) = 2 A 1 , 0 D ( ξ , η ) ( e ξ α e ξ ) , A 2 ( t , z ) = 2 A 2 , 0 D ( ξ , η ) ( e η + α e η ) , A 3 ( t , z ) = 4 iA 1 , 0 A 2 , 0 2 ν 1 , 2 D ( ξ , η ) β ,
ξ = σ A 2 , 0 ( 2 ν 1 , 2 ν 2 , 3 ) 1 / 2 ( t z v 2 T ) , η = σ A 1 , 0 ( 2 ν 1 , 2 ν 1 , 3 ) 1 / 2 ( t z v 1 + T ) .
ν 1 , 2 = 1 / v 2 1 / v 1 , β = A 2 , 0 ν 2 , 3 A 1 , 0 ν 1 , 3 , ν 2 , 3 = 1 / v 2 1 / v 3 , α = ( A 2 , 0 ν 2 , 3 A 1 , 0 ν 1 , 3 ) / β , ν 1 , 3 = 1 / v 3 1 / v 1 , γ = 4 A 1 , 0 A 2 , 0 ν 1 , 3 ν 2 , 3 / β 2 , D ( ξ , η ) = 4 cosh ( ξ ) cosh ( η ) + γ exp ( ξ η ) .
A j ( t , z ) A j , 0 sech { 2 σ A j , 0 ν 1 , 2 ν j , 3 [ t z v j + ( 1 ) j T ] } ,
τ j = 1 . 76 ν 1 , 2 ν j , 3 2 σ A j , 0 for j = 1 , 2 .
max A 3 = A 1 , 0 A 2 , 0 2 ν 1 , 2 max [ A 2 , 0 ν 2 , 3 , A 1 , 0 ν 1 , 3 ] .
θ max = 2 [ 1 + min ( ν 2 , 3 ν 1 , 3 , ν 1 , 3 ν 2 , 3 ) ] ,

Metrics