Abstract

We present a demonstration of mid-infrared photon echoes generated with parametrically downconverted incoherent light. The photon echoes generated in this way enable one to study the dynamics of vibrations in the 1.5–4.0-μm wavelength region with subpicosecond time resolution.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, M. D. Fayer, Phys. Rev. Lett. 70, 2718 (1993).
    [CrossRef] [PubMed]
  2. H. Graener, T. Q. Ye, A. Laubereau, Phys. Rev. B 41, 2597 (1990).
    [CrossRef]
  3. A. Tokmakoff, M. D. Fayer, J. Chem. Phys. 103, 2810 (1995).
    [CrossRef]
  4. M. D. Levenson, S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).
  5. N. Morita, T. Yajima, Phys. Rev. A 30, 2525 (1984).
    [CrossRef]
  6. S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, Phys. Rev. A 29, 2286 (1984).
    [CrossRef]
  7. H. J. Bakker, P. C. M. Planken, L. Kuipers, A. Lagendijk, J. Chem. Phys. 94, 1730 (1991).
    [CrossRef]
  8. M. Bonn, M. J. P. Brugmans, A. W. Kleyn, R. A. van Santen, H. J. Bakker, Phys. Rev. Lett. 76, 2440 (1996).
    [CrossRef] [PubMed]
  9. J. E. Golub, T. W. Mossberg, J. Opt. Soc. Am. B 3, 554 (1986).
    [CrossRef]
  10. Note that only the v = 0 and v = 1 levels have to be considered, as the v = 1 → v = 2 transition frequency is red shifted by 210 cm−1 with respect to the v = 0 → v = 1 transition frequency. Moreover, the laser intensity used is not sufficient to drive the v = 1 → v = 2 transition significantly.
  11. The value of T1 might be somewhat larger at 15 K than at room temperature (although Ref. 2 reports an absence of temperature dependence of this parameter in the temperature region from 80 to 300 K). However, the value obtained for T2 is not very sensitive to the value of T1, and even a least-squares fit with T1 fixed at 10 ps does not result in a significantly different T2.
  12. Y. S. Bai, M. D. Fayer, Chem. Phys. 128, 135 (1988).
    [CrossRef]

1996 (1)

M. Bonn, M. J. P. Brugmans, A. W. Kleyn, R. A. van Santen, H. J. Bakker, Phys. Rev. Lett. 76, 2440 (1996).
[CrossRef] [PubMed]

1995 (1)

A. Tokmakoff, M. D. Fayer, J. Chem. Phys. 103, 2810 (1995).
[CrossRef]

1993 (1)

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, M. D. Fayer, Phys. Rev. Lett. 70, 2718 (1993).
[CrossRef] [PubMed]

1991 (1)

H. J. Bakker, P. C. M. Planken, L. Kuipers, A. Lagendijk, J. Chem. Phys. 94, 1730 (1991).
[CrossRef]

1990 (1)

H. Graener, T. Q. Ye, A. Laubereau, Phys. Rev. B 41, 2597 (1990).
[CrossRef]

1988 (1)

Y. S. Bai, M. D. Fayer, Chem. Phys. 128, 135 (1988).
[CrossRef]

1986 (1)

1984 (2)

N. Morita, T. Yajima, Phys. Rev. A 30, 2525 (1984).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, Phys. Rev. A 29, 2286 (1984).
[CrossRef]

Asaka, S.

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, Phys. Rev. A 29, 2286 (1984).
[CrossRef]

Bai, Y. S.

Y. S. Bai, M. D. Fayer, Chem. Phys. 128, 135 (1988).
[CrossRef]

Bakker, H. J.

M. Bonn, M. J. P. Brugmans, A. W. Kleyn, R. A. van Santen, H. J. Bakker, Phys. Rev. Lett. 76, 2440 (1996).
[CrossRef] [PubMed]

H. J. Bakker, P. C. M. Planken, L. Kuipers, A. Lagendijk, J. Chem. Phys. 94, 1730 (1991).
[CrossRef]

Bonn, M.

M. Bonn, M. J. P. Brugmans, A. W. Kleyn, R. A. van Santen, H. J. Bakker, Phys. Rev. Lett. 76, 2440 (1996).
[CrossRef] [PubMed]

Brugmans, M. J. P.

M. Bonn, M. J. P. Brugmans, A. W. Kleyn, R. A. van Santen, H. J. Bakker, Phys. Rev. Lett. 76, 2440 (1996).
[CrossRef] [PubMed]

Chen, S.

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, M. D. Fayer, Phys. Rev. Lett. 70, 2718 (1993).
[CrossRef] [PubMed]

Fayer, M. D.

A. Tokmakoff, M. D. Fayer, J. Chem. Phys. 103, 2810 (1995).
[CrossRef]

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, M. D. Fayer, Phys. Rev. Lett. 70, 2718 (1993).
[CrossRef] [PubMed]

Y. S. Bai, M. D. Fayer, Chem. Phys. 128, 135 (1988).
[CrossRef]

Fujiwara, M.

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, Phys. Rev. A 29, 2286 (1984).
[CrossRef]

Golub, J. E.

Graener, H.

H. Graener, T. Q. Ye, A. Laubereau, Phys. Rev. B 41, 2597 (1990).
[CrossRef]

Greenfield, S. R.

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, M. D. Fayer, Phys. Rev. Lett. 70, 2718 (1993).
[CrossRef] [PubMed]

Kano, S. S.

M. D. Levenson, S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Kleyn, A. W.

M. Bonn, M. J. P. Brugmans, A. W. Kleyn, R. A. van Santen, H. J. Bakker, Phys. Rev. Lett. 76, 2440 (1996).
[CrossRef] [PubMed]

Kuipers, L.

H. J. Bakker, P. C. M. Planken, L. Kuipers, A. Lagendijk, J. Chem. Phys. 94, 1730 (1991).
[CrossRef]

Lagendijk, A.

H. J. Bakker, P. C. M. Planken, L. Kuipers, A. Lagendijk, J. Chem. Phys. 94, 1730 (1991).
[CrossRef]

Laubereau, A.

H. Graener, T. Q. Ye, A. Laubereau, Phys. Rev. B 41, 2597 (1990).
[CrossRef]

Levenson, M. D.

M. D. Levenson, S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Matsuoka, M.

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, Phys. Rev. A 29, 2286 (1984).
[CrossRef]

Morita, N.

N. Morita, T. Yajima, Phys. Rev. A 30, 2525 (1984).
[CrossRef]

Mossberg, T. W.

Nakatsuka, H.

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, Phys. Rev. A 29, 2286 (1984).
[CrossRef]

Planken, P. C. M.

H. J. Bakker, P. C. M. Planken, L. Kuipers, A. Lagendijk, J. Chem. Phys. 94, 1730 (1991).
[CrossRef]

Tokmakoff, A.

A. Tokmakoff, M. D. Fayer, J. Chem. Phys. 103, 2810 (1995).
[CrossRef]

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, M. D. Fayer, Phys. Rev. Lett. 70, 2718 (1993).
[CrossRef] [PubMed]

van Santen, R. A.

M. Bonn, M. J. P. Brugmans, A. W. Kleyn, R. A. van Santen, H. J. Bakker, Phys. Rev. Lett. 76, 2440 (1996).
[CrossRef] [PubMed]

Yajima, T.

N. Morita, T. Yajima, Phys. Rev. A 30, 2525 (1984).
[CrossRef]

Ye, T. Q.

H. Graener, T. Q. Ye, A. Laubereau, Phys. Rev. B 41, 2597 (1990).
[CrossRef]

Zimdars, D.

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, M. D. Fayer, Phys. Rev. Lett. 70, 2718 (1993).
[CrossRef] [PubMed]

Chem. Phys. (1)

Y. S. Bai, M. D. Fayer, Chem. Phys. 128, 135 (1988).
[CrossRef]

J. Chem. Phys. (2)

A. Tokmakoff, M. D. Fayer, J. Chem. Phys. 103, 2810 (1995).
[CrossRef]

H. J. Bakker, P. C. M. Planken, L. Kuipers, A. Lagendijk, J. Chem. Phys. 94, 1730 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys. Rev. A (2)

N. Morita, T. Yajima, Phys. Rev. A 30, 2525 (1984).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, Phys. Rev. A 29, 2286 (1984).
[CrossRef]

Phys. Rev. B (1)

H. Graener, T. Q. Ye, A. Laubereau, Phys. Rev. B 41, 2597 (1990).
[CrossRef]

Phys. Rev. Lett. (2)

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, M. D. Fayer, Phys. Rev. Lett. 70, 2718 (1993).
[CrossRef] [PubMed]

M. Bonn, M. J. P. Brugmans, A. W. Kleyn, R. A. van Santen, H. J. Bakker, Phys. Rev. Lett. 76, 2440 (1996).
[CrossRef] [PubMed]

Other (3)

M. D. Levenson, S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Note that only the v = 0 and v = 1 levels have to be considered, as the v = 1 → v = 2 transition frequency is red shifted by 210 cm−1 with respect to the v = 0 → v = 1 transition frequency. Moreover, the laser intensity used is not sufficient to drive the v = 1 → v = 2 transition significantly.

The value of T1 might be somewhat larger at 15 K than at room temperature (although Ref. 2 reports an absence of temperature dependence of this parameter in the temperature region from 80 to 300 K). However, the value obtained for T2 is not very sensitive to the value of T1, and even a least-squares fit with T1 fixed at 10 ps does not result in a significantly different T2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Integrated FWM intensity as a function of delay between k1 and k2 at an excitation wavelength of 3.0 μm in a 100-μm-thick sample consisting of a 2.2 mol/L solution of methanol in bromoform at room temperature. The signal consists of a symmetric coherence spike superimposed upon a broad background.

Fig. 2
Fig. 2

Integrated FWM intensity as a function of delay between k1 and k2 at an excitation wavelength of 2.9 μm in poly(vinylbutyral) at room temperature and 15 K. The sample consisted of a 50-μm layer of poly(vinylbutyral) deposited upon a sapphire plate by the procedure of Ref. 2. The curves have been calculated with the model described in Ref. 5.

Metrics