Abstract

We generated synchronized sub-200-fs pulses between 3 and 4.4 mm at a 1-kHz repetition rate by pumping a KNbO3 optical parametric amplifier with a femtosecond Ti:sapphire regenerative amplifier and seeding it by narrow-band quasi-cw radiation. Output idler energies as high as 7 μJ at 4 μm are reported from this extremely simple single-stage device, which correspond to amplification factors as high as 3 × 105 and a conversion efficiency of 15.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Seifert, V. Petrov, M. Woerner, Opt. Lett. 19, 2009 (1994).
    [CrossRef] [PubMed]
  2. V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994); V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, F. Noack, J. Appl. Phys. 76, 7704 (1994).
    [CrossRef]
  3. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, Appl. Phys. Lett. 68, 452 (1996).
    [CrossRef]
  4. V. Petrov, F. Noack, J. Opt. Soc. Am. B 12, 2214 (1995).
    [CrossRef]
  5. D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
    [CrossRef]
  6. G. Ghosh, Appl. Phys. Lett. 65, 3311 (1994).
    [CrossRef]
  7. V. Petrov, F. Noack, Opt. Lett. 20, 2171 (1995).
    [CrossRef] [PubMed]
  8. T. Nishikawa, N. Uesugi, J. Yumoto, Appl. Phys. Lett. 58, 1943 (1994); T. Nishikawa, N. Uesugi, J. Appl. Phys. 77, 4941 (1995).
    [CrossRef]

1996 (1)

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

1995 (2)

1994 (4)

T. Nishikawa, N. Uesugi, J. Yumoto, Appl. Phys. Lett. 58, 1943 (1994); T. Nishikawa, N. Uesugi, J. Appl. Phys. 77, 4941 (1995).
[CrossRef]

G. Ghosh, Appl. Phys. Lett. 65, 3311 (1994).
[CrossRef]

F. Seifert, V. Petrov, M. Woerner, Opt. Lett. 19, 2009 (1994).
[CrossRef] [PubMed]

V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994); V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, F. Noack, J. Appl. Phys. 76, 7704 (1994).
[CrossRef]

1992 (1)

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

Bosshard, C.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Ghosh, G.

G. Ghosh, Appl. Phys. Lett. 65, 3311 (1994).
[CrossRef]

Günter, P.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Nishikawa, T.

T. Nishikawa, N. Uesugi, J. Yumoto, Appl. Phys. Lett. 58, 1943 (1994); T. Nishikawa, N. Uesugi, J. Appl. Phys. 77, 4941 (1995).
[CrossRef]

Noack, F.

V. Petrov, F. Noack, J. Opt. Soc. Am. B 12, 2214 (1995).
[CrossRef]

V. Petrov, F. Noack, Opt. Lett. 20, 2171 (1995).
[CrossRef] [PubMed]

V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994); V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, F. Noack, J. Appl. Phys. 76, 7704 (1994).
[CrossRef]

Petrov, V.

V. Petrov, F. Noack, Opt. Lett. 20, 2171 (1995).
[CrossRef] [PubMed]

V. Petrov, F. Noack, J. Opt. Soc. Am. B 12, 2214 (1995).
[CrossRef]

F. Seifert, V. Petrov, M. Woerner, Opt. Lett. 19, 2009 (1994).
[CrossRef] [PubMed]

V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994); V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, F. Noack, J. Appl. Phys. 76, 7704 (1994).
[CrossRef]

Roberts, D. A.

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

Seifert, F.

F. Seifert, V. Petrov, M. Woerner, Opt. Lett. 19, 2009 (1994).
[CrossRef] [PubMed]

V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994); V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, F. Noack, J. Appl. Phys. 76, 7704 (1994).
[CrossRef]

Spence, D. E.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Tang, C. L.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Uesugi, N.

T. Nishikawa, N. Uesugi, J. Yumoto, Appl. Phys. Lett. 58, 1943 (1994); T. Nishikawa, N. Uesugi, J. Appl. Phys. 77, 4941 (1995).
[CrossRef]

Wielandy, S.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Woerner, M.

Yumoto, J.

T. Nishikawa, N. Uesugi, J. Yumoto, Appl. Phys. Lett. 58, 1943 (1994); T. Nishikawa, N. Uesugi, J. Appl. Phys. 77, 4941 (1995).
[CrossRef]

Appl. Phys. Lett. (4)

V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994); V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, F. Noack, J. Appl. Phys. 76, 7704 (1994).
[CrossRef]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

G. Ghosh, Appl. Phys. Lett. 65, 3311 (1994).
[CrossRef]

T. Nishikawa, N. Uesugi, J. Yumoto, Appl. Phys. Lett. 58, 1943 (1994); T. Nishikawa, N. Uesugi, J. Appl. Phys. 77, 4941 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: L1, 30-cm lens; L2, −15-cm lens; L3, 40-cm lens; L4, 30-cm CaF2 lens; L5, 15-cm BaF2 lens; NC1, OPA crystal; NC2, LiIO3 crystal; F1, 1-mm-thick Ge plate; F2, tunable broadband interference filter; DM1, dichroic mirror totally transmitting the 1.053-μm wave and 80% reflecting near 800 nm; DM2, Al-coated beam splitter; BS1, BS2, removable mirrors; PR, polarization rotator; D, Si photodiode; SHG, second-harmonic generation.

Fig. 2
Fig. 2

GVM in KNbO3 (solid curves) and in BBO (dashed curves) versus pump wavelength, where Δip = 1/vi − 1/vp and Δsp = 1/vs − 1/vp. vp, vs, and vi are the pump, signal, and idler group velocities, respectively. The signal wavelength is fixed (1.053 μm). For MIR wavelengths exceeding 3.4 μm (pump wavelengths of >800 nm) the curves in the case of KNbO3 are extrapolations.6

Fig. 3
Fig. 3

Idler energy versus idler wavelength for KNbO3 and BBO. The solid curves and squares designate an adjustment of the pulse compressor behind the regenerative amplifier that yields the shortest pump pulses (≈200 fs in duration). The dashed curves (circles) correspond to longer (chirped) pump pulses, from which the highest MIR pulse energy is obtained.

Fig. 4
Fig. 4

Saturation behavior of the KNbO3 OPA at two pump wavelengths: 811 nm (dashed curve, circles) and 821 nm (solid curve, squares). 1 W of average seed power corresponds to a seed level of 500 W.

Fig. 5
Fig. 5

Cross-correlation function of the idler pulses at 4 μm with the pump pulses and the idler spectrum (inset) at a reduced pump intensity corresponding to an idler energy of 2 μJ. The idler pulse duration estimated from the trace assuming Gaussian pulse shapes is 125 fs, and the pulse length–bandwidth product is 0.5.

Metrics