Abstract

We describe a novel interferometer design suitable for highly accurate measurement of wave-front aberrations over a wide range of wavelengths, from visible to x ray. The new design, based on the point diffraction interferometer, preserves the advantages of the conventional point diffraction interferometer but offers higher efficiency and improved accuracy through phase shifting. These qualities make it applicable to at-wavelength testing of many optical systems, including short-wavelength projection lithography optics. A visible-light prototype was built and operated.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. P. Linnik, Proc. Acad. Sci. USSR 1, 208 (1933).
  2. R. N. Smartt, W. H. Steel, Jpn. J. Appl. Phys. 14, Suppl. 14-1, 351 (1975).
  3. K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
    [CrossRef]
  4. O. Y. Kwon, Opt. Lett. 9, 59 (1984).
    [CrossRef] [PubMed]
  5. Code V Reference Manual, ver. 8.0 (Optical Research Associates, Pasadena, Calif.), p. 2A-335.
  6. D. Malacara, ed., Optical Shop Testing, 2nd ed. (Wiley, New York, 1992), Chap. 13.
  7. D. J. Fisher, J. T. O’Bryan, R. Lopez, H. P. Stahl, Appl. Opt. 32, 4738 (1993).
    [CrossRef]
  8. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 153–154.

1995 (1)

K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
[CrossRef]

1993 (1)

1984 (1)

1975 (1)

R. N. Smartt, W. H. Steel, Jpn. J. Appl. Phys. 14, Suppl. 14-1, 351 (1975).

1933 (1)

W. P. Linnik, Proc. Acad. Sci. USSR 1, 208 (1933).

Attwood, D. T.

K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
[CrossRef]

Beguiristain, R.

K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
[CrossRef]

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 153–154.

Bokor, J.

K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
[CrossRef]

Fisher, D. J.

Goldberg, K. A.

K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
[CrossRef]

Jackson, K.

K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
[CrossRef]

Kwon, O. Y.

Linnik, W. P.

W. P. Linnik, Proc. Acad. Sci. USSR 1, 208 (1933).

Lopez, R.

Medecki, H.

K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
[CrossRef]

O’Bryan, J. T.

Smartt, R. N.

R. N. Smartt, W. H. Steel, Jpn. J. Appl. Phys. 14, Suppl. 14-1, 351 (1975).

Sommargren, G. E.

K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
[CrossRef]

Stahl, H. P.

Steel, W. H.

R. N. Smartt, W. H. Steel, Jpn. J. Appl. Phys. 14, Suppl. 14-1, 351 (1975).

Tejnil, E.

K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
[CrossRef]

Appl. Opt. (1)

J. Vac. Sci. Technol. B (1)

K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, D. T. Attwood, K. Jackson, E. Tejnil, G. E. Sommargren, J. Vac. Sci. Technol. B 13, 2923 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. N. Smartt, W. H. Steel, Jpn. J. Appl. Phys. 14, Suppl. 14-1, 351 (1975).

Opt. Lett. (1)

Proc. Acad. Sci. USSR (1)

W. P. Linnik, Proc. Acad. Sci. USSR 1, 208 (1933).

Other (3)

Code V Reference Manual, ver. 8.0 (Optical Research Associates, Pasadena, Calif.), p. 2A-335.

D. Malacara, ed., Optical Shop Testing, 2nd ed. (Wiley, New York, 1992), Chap. 13.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 153–154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Principle of optics testing with (a) the conventional point diffraction interferometer and (b), (c) the phase-shifting point diffraction interferometer. The PS/PDI utilizes a small-angle beam splitter (e.g., grating) and a two-pinhole spatial filter in the image plane. The illuminating beam is divided by a beam splitter that either (b) follows a single-pinhole entrance spatial filter or (c) precedes a two-pinhole entrance spatial filter.

Fig. 2
Fig. 2

Measurement of phase aberrations in a microscope objective lens with the phase-shifting point diffraction interferometer at λ = 632.8 nm. The measurement was performed for two rotational orientations of the lens with respect to the interferometer. For both orientations the recorded fringes (a) were analyzed to determine the wave-front phase map of the aperture of the optic (b). (c) The agreement of the Zernike polynomial fit coefficients for the two measurements indicates measurement self-consistency.

Metrics