Abstract

Two single-mode laser diodes have been injection locked to the +1 and −1 diffracted orders of a 4.6-GHz acousto-optical modulator. The measured locking bandwidth was 3 GHz for a locking gain of 35 dB. The microwave signal at 9.2 GHz had a measured linewidth of less than a few hertz. We used this system to drive stimulated Raman transitions between the cesium ground-state hyperfine levels. We observed Ramsey fringes and used them to characterize the microwave signal phase noise.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Thomas, P. R. Hemmer, S. Ezekiel, J. Leiby, R. H. Picard, C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
    [CrossRef]
  2. C. J. Myatt, N. R. Newbury, C. E. Wieman, Opt. Lett. 18, 649 (1993).
    [CrossRef] [PubMed]
  3. K. Gibble, S. Chu, Phys. Rev. Lett. 70, 1771 (1993).
    [CrossRef] [PubMed]
  4. K. Moler, D. Weiss, M. Kasevich, S. Chu, Phys. Rev. A 45, 342 (1992); M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
    [CrossRef] [PubMed]
  5. M. Kasevich, S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
    [CrossRef] [PubMed]
  6. M. Kasevich, S. Chu, Appl. Phys. B 54, 321 (1992).
    [CrossRef]
  7. G. Santarelly, A. Clairon, S. N. Lea, G. Tino, Opt. Commun. 104, 339 (1994).
    [CrossRef]
  8. L. Golberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
    [CrossRef]
  9. S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
    [CrossRef]
  10. 4.6-GHz 852-nm frequency shifter, Model MGAPFS-4.6G-852, from MVM Electronics, Inc., Melbourne, Fla.
  11. The stability of an injection-locked laser was studied in J. P. Bouyer, C. Bréant, P. Schanne, Proc. SPIE 1837, 324 (1993). For sufficient injected power the authors observed the appearance of holes inside the locking range. These holes correspond to optical power transferred to the relaxation sidebands. For high-enough power, all the optical power can be in those sidebands. As a result, the laser is no longer injection locked.
    [CrossRef]
  12. N. F. Ramsey, Phys. Rev. 78, 695 (1950).
    [CrossRef]
  13. A. Aspect, N. Vansteenkiste, R. Kaiser, H. Haberland, M. Karrais, Chem. Phys. 145, 307 (1990).
    [CrossRef]
  14. P. D. Lett, W. D. Phillips, S. C. Rolston, C. E. Tanner, R. N. Watts, C. I. Westbrook, J. Opt. Soc. Am. B 6, 2084 (1989).
    [CrossRef]

1994 (1)

G. Santarelly, A. Clairon, S. N. Lea, G. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

1993 (3)

The stability of an injection-locked laser was studied in J. P. Bouyer, C. Bréant, P. Schanne, Proc. SPIE 1837, 324 (1993). For sufficient injected power the authors observed the appearance of holes inside the locking range. These holes correspond to optical power transferred to the relaxation sidebands. For high-enough power, all the optical power can be in those sidebands. As a result, the laser is no longer injection locked.
[CrossRef]

K. Gibble, S. Chu, Phys. Rev. Lett. 70, 1771 (1993).
[CrossRef] [PubMed]

C. J. Myatt, N. R. Newbury, C. E. Wieman, Opt. Lett. 18, 649 (1993).
[CrossRef] [PubMed]

1992 (3)

K. Moler, D. Weiss, M. Kasevich, S. Chu, Phys. Rev. A 45, 342 (1992); M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

M. Kasevich, S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
[CrossRef] [PubMed]

M. Kasevich, S. Chu, Appl. Phys. B 54, 321 (1992).
[CrossRef]

1990 (1)

A. Aspect, N. Vansteenkiste, R. Kaiser, H. Haberland, M. Karrais, Chem. Phys. 145, 307 (1990).
[CrossRef]

1989 (1)

1983 (1)

L. Golberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

1982 (1)

J. E. Thomas, P. R. Hemmer, S. Ezekiel, J. Leiby, R. H. Picard, C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

1981 (1)

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

1950 (1)

N. F. Ramsey, Phys. Rev. 78, 695 (1950).
[CrossRef]

Aspect, A.

A. Aspect, N. Vansteenkiste, R. Kaiser, H. Haberland, M. Karrais, Chem. Phys. 145, 307 (1990).
[CrossRef]

Bloom, D. M.

L. Golberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Bouyer, J. P.

The stability of an injection-locked laser was studied in J. P. Bouyer, C. Bréant, P. Schanne, Proc. SPIE 1837, 324 (1993). For sufficient injected power the authors observed the appearance of holes inside the locking range. These holes correspond to optical power transferred to the relaxation sidebands. For high-enough power, all the optical power can be in those sidebands. As a result, the laser is no longer injection locked.
[CrossRef]

Bréant, C.

The stability of an injection-locked laser was studied in J. P. Bouyer, C. Bréant, P. Schanne, Proc. SPIE 1837, 324 (1993). For sufficient injected power the authors observed the appearance of holes inside the locking range. These holes correspond to optical power transferred to the relaxation sidebands. For high-enough power, all the optical power can be in those sidebands. As a result, the laser is no longer injection locked.
[CrossRef]

Chu, S.

K. Gibble, S. Chu, Phys. Rev. Lett. 70, 1771 (1993).
[CrossRef] [PubMed]

M. Kasevich, S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
[CrossRef] [PubMed]

K. Moler, D. Weiss, M. Kasevich, S. Chu, Phys. Rev. A 45, 342 (1992); M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

M. Kasevich, S. Chu, Appl. Phys. B 54, 321 (1992).
[CrossRef]

Clairon, A.

G. Santarelly, A. Clairon, S. N. Lea, G. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

Ezekiel, S.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, J. Leiby, R. H. Picard, C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Gibble, K.

K. Gibble, S. Chu, Phys. Rev. Lett. 70, 1771 (1993).
[CrossRef] [PubMed]

Golberg, L.

L. Golberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Haberland, H.

A. Aspect, N. Vansteenkiste, R. Kaiser, H. Haberland, M. Karrais, Chem. Phys. 145, 307 (1990).
[CrossRef]

Hemmer, P. R.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, J. Leiby, R. H. Picard, C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Kaiser, R.

A. Aspect, N. Vansteenkiste, R. Kaiser, H. Haberland, M. Karrais, Chem. Phys. 145, 307 (1990).
[CrossRef]

Karrais, M.

A. Aspect, N. Vansteenkiste, R. Kaiser, H. Haberland, M. Karrais, Chem. Phys. 145, 307 (1990).
[CrossRef]

Kasevich, M.

M. Kasevich, S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
[CrossRef] [PubMed]

K. Moler, D. Weiss, M. Kasevich, S. Chu, Phys. Rev. A 45, 342 (1992); M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

M. Kasevich, S. Chu, Appl. Phys. B 54, 321 (1992).
[CrossRef]

Kimura, T.

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Kobayashi, S.

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Lea, S. N.

G. Santarelly, A. Clairon, S. N. Lea, G. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

Leiby, J.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, J. Leiby, R. H. Picard, C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Lett, P. D.

Moler, K.

K. Moler, D. Weiss, M. Kasevich, S. Chu, Phys. Rev. A 45, 342 (1992); M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

Myatt, C. J.

Newbury, N. R.

Phillips, W. D.

Picard, R. H.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, J. Leiby, R. H. Picard, C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Ramsey, N. F.

N. F. Ramsey, Phys. Rev. 78, 695 (1950).
[CrossRef]

Rolston, S. C.

Santarelly, G.

G. Santarelly, A. Clairon, S. N. Lea, G. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

Schanne, P.

The stability of an injection-locked laser was studied in J. P. Bouyer, C. Bréant, P. Schanne, Proc. SPIE 1837, 324 (1993). For sufficient injected power the authors observed the appearance of holes inside the locking range. These holes correspond to optical power transferred to the relaxation sidebands. For high-enough power, all the optical power can be in those sidebands. As a result, the laser is no longer injection locked.
[CrossRef]

Tanner, C. E.

Taylor, H. F.

L. Golberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Thomas, J. E.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, J. Leiby, R. H. Picard, C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Tino, G.

G. Santarelly, A. Clairon, S. N. Lea, G. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

Vansteenkiste, N.

A. Aspect, N. Vansteenkiste, R. Kaiser, H. Haberland, M. Karrais, Chem. Phys. 145, 307 (1990).
[CrossRef]

Watts, R. N.

Weiss, D.

K. Moler, D. Weiss, M. Kasevich, S. Chu, Phys. Rev. A 45, 342 (1992); M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

Weller, J. F.

L. Golberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Westbrook, C. I.

Wieman, C. E.

Willis, C. R.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, J. Leiby, R. H. Picard, C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Appl. Phys. B (1)

M. Kasevich, S. Chu, Appl. Phys. B 54, 321 (1992).
[CrossRef]

Chem. Phys. (1)

A. Aspect, N. Vansteenkiste, R. Kaiser, H. Haberland, M. Karrais, Chem. Phys. 145, 307 (1990).
[CrossRef]

Electron. Lett. (1)

L. Golberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. Santarelly, A. Clairon, S. N. Lea, G. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

N. F. Ramsey, Phys. Rev. 78, 695 (1950).
[CrossRef]

Phys. Rev. A (1)

K. Moler, D. Weiss, M. Kasevich, S. Chu, Phys. Rev. A 45, 342 (1992); M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

M. Kasevich, S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
[CrossRef] [PubMed]

K. Gibble, S. Chu, Phys. Rev. Lett. 70, 1771 (1993).
[CrossRef] [PubMed]

J. E. Thomas, P. R. Hemmer, S. Ezekiel, J. Leiby, R. H. Picard, C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Proc. SPIE (1)

The stability of an injection-locked laser was studied in J. P. Bouyer, C. Bréant, P. Schanne, Proc. SPIE 1837, 324 (1993). For sufficient injected power the authors observed the appearance of holes inside the locking range. These holes correspond to optical power transferred to the relaxation sidebands. For high-enough power, all the optical power can be in those sidebands. As a result, the laser is no longer injection locked.
[CrossRef]

Other (1)

4.6-GHz 852-nm frequency shifter, Model MGAPFS-4.6G-852, from MVM Electronics, Inc., Melbourne, Fla.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Experimental apparatus. The master laser can be tuned continuously up to a few gigahertz from the cesium D2 line by adjustment of the driving current. The AOM is driven by 1 W of rf at 4.6 GHz. The rf can be tuned by ±3 MHz without destroying the OIL. Antireflection-coated anamorphic prisms are used to reduce the beam's larger dimension to achieve maximum transmission through the optical isolator. (b) Beat-note spectrum of the two injection locked oscillators [SL1 and SL2 in (a) ] at twice the driving rf (9.2 GHz). The spectrum analyzer was configured for the 10-kHz resolution bandwidth and 64 averages.

Fig. 2
Fig. 2

(a) Ramsey fringes for two oscillating regions separated by 2 m. The signal-to-noise ratio is ≃ 500 after a 1-s integration time. (b) The rms phase noise at the center of the fringe pattern is consistent with the specified performance of the HP83721A frequency synthesizer used to drive the AOM.

Metrics