Abstract

It is shown that the relationship between capacitance and refractive index is linear for liquid-crystal optical devices, such as liquid-crystal Fabry–Perot interferometer filters and liquid-crystal microprism arrays. A linearizing circuit that compensates for the nonlinear properties of liquid-crystal optical devices is made, in which capacitance instead of applied voltage is monitored. It can also directly display the value of the transmission peak wavelength or the deflection angle.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hirabayashi, H. Tsuda, T. Kurokawa, J. Lightwave. Technol. 11, 2033 (1993).
    [CrossRef]
  2. K. Kirabayashi, T. Yamamoto, M. Yamaguchi, Appl. Opt. 34, 2571 (1995).
    [CrossRef]
  3. S. Sato, Jpn. J. Appl. Phys. 18, 1679 (1979).
    [CrossRef]
  4. T. Nose, S. Sato, Electron. Lett. 23, 878 (1987).
    [CrossRef]

1995 (1)

1993 (1)

K. Hirabayashi, H. Tsuda, T. Kurokawa, J. Lightwave. Technol. 11, 2033 (1993).
[CrossRef]

1987 (1)

T. Nose, S. Sato, Electron. Lett. 23, 878 (1987).
[CrossRef]

1979 (1)

S. Sato, Jpn. J. Appl. Phys. 18, 1679 (1979).
[CrossRef]

Hirabayashi, K.

K. Hirabayashi, H. Tsuda, T. Kurokawa, J. Lightwave. Technol. 11, 2033 (1993).
[CrossRef]

Kirabayashi, K.

Kurokawa, T.

K. Hirabayashi, H. Tsuda, T. Kurokawa, J. Lightwave. Technol. 11, 2033 (1993).
[CrossRef]

Nose, T.

T. Nose, S. Sato, Electron. Lett. 23, 878 (1987).
[CrossRef]

Sato, S.

T. Nose, S. Sato, Electron. Lett. 23, 878 (1987).
[CrossRef]

S. Sato, Jpn. J. Appl. Phys. 18, 1679 (1979).
[CrossRef]

Tsuda, H.

K. Hirabayashi, H. Tsuda, T. Kurokawa, J. Lightwave. Technol. 11, 2033 (1993).
[CrossRef]

Yamaguchi, M.

Yamamoto, T.

Appl. Opt. (1)

Electron. Lett. (1)

T. Nose, S. Sato, Electron. Lett. 23, 878 (1987).
[CrossRef]

J. Lightwave. Technol. (1)

K. Hirabayashi, H. Tsuda, T. Kurokawa, J. Lightwave. Technol. 11, 2033 (1993).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Sato, Jpn. J. Appl. Phys. 18, 1679 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of (a) a LC-FPI filter and (b) a LC microprism array.

Fig. 2
Fig. 2

Dependence of transmission peak wavelength and capacitance on applied voltage for the LC-FPI filter.

Fig. 3
Fig. 3

Dependence of deflection angle and capacitance on applied voltage for the LC microprism array.

Fig. 4
Fig. 4

(a) Dependence of transmission peak wavelength on capacitance for the LC-FPI filter, (b) dependence of deflection angle on capacitance for the LC microprism array.

Fig. 5
Fig. 5

Compensating circuit for nonlinear properties of LC-FPI filters and LC microprism arrays.

Fig. 6
Fig. 6

Relationship between transmission peak wavelength measured by a spectrum analyzer and values calculated by the circuit.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 n L / m ,
θ = ( n n glass ) ϕ ,
C LC = C R V R / V LC ,
λ     or     θ = a C LC + b .
λ     or     θ = a V R / V LC + b .

Metrics