Abstract

It is advantageous to achieve stable self-mode locking without hard apertures by designing resonators to minimize cavity-dispersion noncoaxiality in Brewster-cut gain media. The cavity-loss modulation introduced by Kerr effects is then optimized.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  2. F. Salin, J. Squier, M. Piche, Opt. Lett. 16, 1674 (1991).
    [CrossRef] [PubMed]
  3. M. Piche, F. Salin, Opt. Lett. 18, 1041 (1993).
    [CrossRef] [PubMed]
  4. J. Herrmann, J. Opt. Soc. Am. B 11, 498 (1994).
    [CrossRef]
  5. G. Cerullo, S. De Silvestri, V. Magni, L. Pallaro, Opt. Lett. 19, 807 (1994).
    [CrossRef] [PubMed]
  6. C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 17, 1289 (1992).
    [CrossRef] [PubMed]
  7. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 18, 977 (1993).
    [CrossRef] [PubMed]
  8. G. Cerullo, S. De Silvestri, V. Magni, Opt. Lett. 19, 1040 (1994).
    [CrossRef] [PubMed]
  9. H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
    [CrossRef]
  10. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  11. M. Lia, Opt. Lett. 19, 722 (1994).
    [CrossRef]
  12. J. Zhou, G. Taft, C. Huang, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 19, 1149 (1994).
    [PubMed]

1994 (5)

1993 (2)

1992 (1)

1991 (2)

1980 (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

1975 (1)

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

Asaki, M. T.

Backus, S.

Cerullo, G.

De Silvestri, S.

Garvey, D.

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Haus, H. A.

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

Herrmann, J.

Huang, C.

Huang, C. P.

Kapteyn, H. C.

Kean, P. N.

Lia, M.

Magni, V.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Murnane, M. M.

Pallaro, L.

Piche, M.

Salin, F.

Sibbett, W.

Spence, D. E.

Squier, J.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Taft, G.

Zhou, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Resonator configuration: folding mirrors M1 and M2 have radii of curvature R1 and R2, respectively; end mirrors M3 and M4 are flat; and the folding angles are θ1 and θ2. l1 and l2 are the cavity lengths of the two folding mirrors from the close faces of the rod, respectively; l3 and l4 are the two arms of the resonator. (b) Matrix representation of the resonator: the matrices describe the propagation from one end mirror (M4) to the corresponding face (S1) of the rod and from the other face (S2) to the other end mirror (M3). In the tangential (t) plane the equivalent length of the rod is Lt = L/n3 and the folding mirrors correspond to a lens with focal length fjt = Rj cos(θj)/2; in the sagittal (s) plane Ls = L/n and fjs = Rj/[2 cos(θj)], j = 1, 2.

Fig. 2
Fig. 2

Theoretical curve of ψt versus l1 + l2 in the stability regions of an astigmatically compensated resonator with L = 5 mm, l3 = 600 mm, and l4 = 900 mm. The dotted horizontal lines are the stability limits. The CDN is minimized at the point ψt = 0 corresponding to l1 + l2 = 99.13 mm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

cos ( i ) δ i = sin ( r ) δ n + n cos ( r ) δ r
d j cos ( i ) = d j cos ( r )             ( j = 1 , 2 )
d 2 = d 1 + L δ r .
d j e = ( 1 ) j δ i e ( f j e 1 j )             ( j = 1 , 2 ; e = t , s ) .
δ r e = ( L e l 1 + l 2 f 1 e f 2 e + L e 1 ) t g ( r e ) n δ n = ψ e δ n ,             ( e = t , s ) ,
d j e = ( 1 ) j L ( f j e 1 j ) t g ( r e ) ( l 1 + l 2 f 1 e f 2 e + L e ) n δ n = α j e δ n             ( j = 1 , 2 ; e = t , s ) ,
Δ w j e = ½ α j e Δ λ d n / d λ             ( j = 1 , 2 ; e = t , s )
Δ w e = ¼ L ψ e Δ λ d n / d λ             ( e = t , s ) .
l 1 + l 2 = f 1 t + f 2 t .
l j = f j t             ( j = 1 , 2 ) .
r s t g r s n ψ M n 2 1 ,

Metrics