Abstract

External seeding of stimulated Raman scattering (SRS) in microdroplets is achieved by light injection into the droplet at the Raman-shifted frequency. Two implementations permit observation of the seeding effect. First, a broadband seed laser (∼2 nm FWHM) is used to spectrally discriminate the elastically scattered seed light from the narrow-linewidth SRS. Second, a crossed analyzer is used to reduce by several orders of magnitude the intensity of the detected elastically scattered seed laser, preventing saturation of the detector. Seeding of SRS in microdroplets is effective in enhancing the signal from weak-gain Raman modes but does not significantly increase the SRS intensity from strong-gain Raman modes.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 38 (1985).
    [CrossRef]
  2. H.-B. Lin, J. D. Eversole, A. J. Campillo, Opt. Lett. 17, 828 (1992).
    [CrossRef] [PubMed]
  3. A. Serpenguzel, G. Chen, R. K. Chang, Particulate Sci. Technol. 8, 179 (1990).
    [CrossRef]
  4. M. Golombok, D. B. Pye, Chem. Phys. Lett. 151, 161 (1988).
    [CrossRef]
  5. H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, Opt. Lett. 15, 2079 (1992).
  6. A. Biswas, R. L. Armstrong, R. G. Pinnick, Opt. Lett. 15, 1191 (1990).
    [CrossRef] [PubMed]
  7. A. S. Kwok, R. K. Chang, Opt. Lett. 17, 1262 (1992).
    [CrossRef] [PubMed]
  8. L. Pasternack, J. W. Fleming, J. C. Owrutsky, J. Opt. Soc. Am. B 13, 1510 (1996).
    [CrossRef]
  9. Md. M. Mazumder, K. Schaschek, R. K. Chang, J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
    [CrossRef]
  10. N. Bloembergen, G. Bret, P. Lalleman, A. Pue, P. Simova, IEEE J. Quantum Electron. QE-3, 197 (1967).
    [CrossRef]
  11. M. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, J. Opt. Soc. Am. B 7, 1336 (1990).
    [CrossRef]
  12. A. Owyoung, E. D. Jones, Opt. Lett. 1, 152 (1977).
    [CrossRef] [PubMed]

1996

1995

Md. M. Mazumder, K. Schaschek, R. K. Chang, J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

1992

1990

1988

M. Golombok, D. B. Pye, Chem. Phys. Lett. 151, 161 (1988).
[CrossRef]

1985

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 38 (1985).
[CrossRef]

1977

1967

N. Bloembergen, G. Bret, P. Lalleman, A. Pue, P. Simova, IEEE J. Quantum Electron. QE-3, 197 (1967).
[CrossRef]

Armstrong, R. L.

Biswas, A.

Bloembergen, N.

N. Bloembergen, G. Bret, P. Lalleman, A. Pue, P. Simova, IEEE J. Quantum Electron. QE-3, 197 (1967).
[CrossRef]

Bret, G.

N. Bloembergen, G. Bret, P. Lalleman, A. Pue, P. Simova, IEEE J. Quantum Electron. QE-3, 197 (1967).
[CrossRef]

Campillo, A. J.

H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, Opt. Lett. 15, 2079 (1992).

H.-B. Lin, J. D. Eversole, A. J. Campillo, Opt. Lett. 17, 828 (1992).
[CrossRef] [PubMed]

Chang, R. K.

Md. M. Mazumder, K. Schaschek, R. K. Chang, J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

A. S. Kwok, R. K. Chang, Opt. Lett. 17, 1262 (1992).
[CrossRef] [PubMed]

A. Serpenguzel, G. Chen, R. K. Chang, Particulate Sci. Technol. 8, 179 (1990).
[CrossRef]

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 38 (1985).
[CrossRef]

Chen, G.

A. Serpenguzel, G. Chen, R. K. Chang, Particulate Sci. Technol. 8, 179 (1990).
[CrossRef]

Duncan, M.

Eversole, J. D.

H.-B. Lin, J. D. Eversole, A. J. Campillo, Opt. Lett. 17, 828 (1992).
[CrossRef] [PubMed]

H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, Opt. Lett. 15, 2079 (1992).

Fleming, J. W.

Gillespie, J. B.

Md. M. Mazumder, K. Schaschek, R. K. Chang, J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

Golombok, M.

M. Golombok, D. B. Pye, Chem. Phys. Lett. 151, 161 (1988).
[CrossRef]

Huston, A. L.

H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, Opt. Lett. 15, 2079 (1992).

Jones, E. D.

Kwok, A. S.

Lalleman, P.

N. Bloembergen, G. Bret, P. Lalleman, A. Pue, P. Simova, IEEE J. Quantum Electron. QE-3, 197 (1967).
[CrossRef]

Lin, H.-B.

H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, Opt. Lett. 15, 2079 (1992).

H.-B. Lin, J. D. Eversole, A. J. Campillo, Opt. Lett. 17, 828 (1992).
[CrossRef] [PubMed]

Mahon, R.

Mazumder, Md. M.

Md. M. Mazumder, K. Schaschek, R. K. Chang, J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

Owrutsky, J. C.

Owyoung, A.

Pasternack, L.

Pinnick, R. G.

Pue, A.

N. Bloembergen, G. Bret, P. Lalleman, A. Pue, P. Simova, IEEE J. Quantum Electron. QE-3, 197 (1967).
[CrossRef]

Pye, D. B.

M. Golombok, D. B. Pye, Chem. Phys. Lett. 151, 161 (1988).
[CrossRef]

Qian, S.-X.

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 38 (1985).
[CrossRef]

Reintjes, J.

Schaschek, K.

Md. M. Mazumder, K. Schaschek, R. K. Chang, J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

Serpenguzel, A.

A. Serpenguzel, G. Chen, R. K. Chang, Particulate Sci. Technol. 8, 179 (1990).
[CrossRef]

Simova, P.

N. Bloembergen, G. Bret, P. Lalleman, A. Pue, P. Simova, IEEE J. Quantum Electron. QE-3, 197 (1967).
[CrossRef]

Snow, J. B.

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 38 (1985).
[CrossRef]

Tankersley, L. L.

Chem. Phys. Lett.

M. Golombok, D. B. Pye, Chem. Phys. Lett. 151, 161 (1988).
[CrossRef]

Md. M. Mazumder, K. Schaschek, R. K. Chang, J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

IEEE J. Quantum Electron.

N. Bloembergen, G. Bret, P. Lalleman, A. Pue, P. Simova, IEEE J. Quantum Electron. QE-3, 197 (1967).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Particulate Sci. Technol.

A. Serpenguzel, G. Chen, R. K. Chang, Particulate Sci. Technol. 8, 179 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Polarization geometry for incident pump and seed laser beams, elastic scatter of seed, and generated SRS. The incident seed laser Eseed is horizontally polarized = 90°). The incident pump laser Epump can be horizontally polarized (θ = 90°), vertically polarized (θ = 0°), or polarized θ = 45° relative to the vertical. The scattered seed Eelacseed is horizontally polarized and is reduced from the SRS field ESRS by the crossed analyzer (at θ = 0°).

Fig. 2
Fig. 2

Seeding of the weaker gain mode of methanol (2944 cm−1 polarized mode with ρ ≈ 0): (a) “seeded” SRS plus elastic scatter of seed, “not-seeded” SRS, and elastic scatter of seed with no pump beam, (b) “seeded” SRS after subtraction of elastic scatter of seed and “not-seeded” SRS. The pump polarization and the seed polarization are at θ = 90°, and the analyzer is at θ = 0°. All spectra are 100 laser shot averages.

Fig. 3
Fig. 3

Seeding of acetone (2925-cm−1 mode) in binary mixture microdroplets (3% acetone, 97% water). Pump polarization is at θ = 45°, seed polarization is at θ = 90°, and the analyzer is at θ =0°. The pump intensity is near droplet breakdown. The baselines for the seeded and not-seeded SRS spectra have been displaced, but not for the inset spectra. Both spectra are 30 laser shot averages.

Fig. 4
Fig. 4

Seeding of the strong gain mode of methanol (2928 cm−1) in pure-methanol microdroplets. Both spectra are 100 laser shot averages.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P NL ( ω seed ) = 6 χ 1111 ( 3 ) ( ω seed , ω pump , ω pump ) × E pump 2 E seed [ ρ e ^ seed + ( 1 ρ ) × ( e ^ seed e ^ pump ) e ^ pump ] ,

Metrics