Abstract

Nearly index-matched optical elements are described that have application to aspherical, diffractive, and hybrid refractive–diffractive elements. Owing to the small difference in index, tolerances on the interfacial surface profile are much looser than for conventional aspherical and diffractive elements. A condition on both the index and the dispersion is described that results in an achromatic phase, thereby allowing for diffractive elements with high efficiency over broad spectral bands. Properties of the elements are described and compared with those of conventional diffractive elements. Analytical results and experimental measurements with an inexpensive element with 40 waves of asphericity are presented.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Ebstein, “Method and apparatus for changing the focal length of an optical system,” U.S. patent5,091,801 (February25, 1992).
  2. R. O. Maschmeyer, R. M. Hujar, L. L. Carpenter, B. W. Nicholson, E. F. Vozenilek, Appl. Opt. 22, 2413 (1983).
    [CrossRef] [PubMed]
  3. P. L. Ruben, Appl. Opt. 24, 1682 (1985).
    [CrossRef] [PubMed]
  4. P. P. Clark, C. Londono, Opt. News 15(12), 39 (1989).
    [CrossRef]
  5. P. Cone, Adaptive Optics Associates, Inc., Cambridge, Mass. 02140 (personal communication, 1988).
  6. C. Tribastone, C. Teyssier, Photonics Handbook (Laurin, Pittsfield, Mass., 1993), pp. 340–344.
  7. G. P. Behrmann, J. N. Mait, “Hybrid optical elements,” in Microoptics, H.-P. Herzig, ed. (Taylor & Francis, New York, 1996).
  8. D. A. Buralli, G. M. Morris, J. R. Rogers, Appl. Opt. 28, 976 (1989).
    [CrossRef] [PubMed]
  9. S. M. Ebstein, “Achromatic diffractive optics,” U.S. patent application (February7, 1996).
  10. Catalog, Schott Optical Glass, Duryea, Pa.
  11. E. R. Dowski, W. T. Cathey, Appl. Opt. 34, 1859 (1995).
    [CrossRef] [PubMed]
  12. J. Van der Gracht, E. R. Dowski, M. G. Taylor, D. M. Deaver, Opt. Lett. 21, 919 (1996).
    [CrossRef] [PubMed]

1996

1995

1989

1985

1983

Behrmann, G. P.

G. P. Behrmann, J. N. Mait, “Hybrid optical elements,” in Microoptics, H.-P. Herzig, ed. (Taylor & Francis, New York, 1996).

Buralli, D. A.

Carpenter, L. L.

Cathey, W. T.

Clark, P. P.

P. P. Clark, C. Londono, Opt. News 15(12), 39 (1989).
[CrossRef]

Cone, P.

P. Cone, Adaptive Optics Associates, Inc., Cambridge, Mass. 02140 (personal communication, 1988).

Deaver, D. M.

Dowski, E. R.

Ebstein, S. M.

S. M. Ebstein, “Achromatic diffractive optics,” U.S. patent application (February7, 1996).

S. M. Ebstein, “Method and apparatus for changing the focal length of an optical system,” U.S. patent5,091,801 (February25, 1992).

Hujar, R. M.

Londono, C.

P. P. Clark, C. Londono, Opt. News 15(12), 39 (1989).
[CrossRef]

Mait, J. N.

G. P. Behrmann, J. N. Mait, “Hybrid optical elements,” in Microoptics, H.-P. Herzig, ed. (Taylor & Francis, New York, 1996).

Maschmeyer, R. O.

Morris, G. M.

Nicholson, B. W.

Rogers, J. R.

Ruben, P. L.

Taylor, M. G.

Teyssier, C.

C. Tribastone, C. Teyssier, Photonics Handbook (Laurin, Pittsfield, Mass., 1993), pp. 340–344.

Tribastone, C.

C. Tribastone, C. Teyssier, Photonics Handbook (Laurin, Pittsfield, Mass., 1993), pp. 340–344.

Van der Gracht, J.

Vozenilek, E. F.

Appl. Opt.

Opt. Lett.

Opt. News

P. P. Clark, C. Londono, Opt. News 15(12), 39 (1989).
[CrossRef]

Other

P. Cone, Adaptive Optics Associates, Inc., Cambridge, Mass. 02140 (personal communication, 1988).

C. Tribastone, C. Teyssier, Photonics Handbook (Laurin, Pittsfield, Mass., 1993), pp. 340–344.

G. P. Behrmann, J. N. Mait, “Hybrid optical elements,” in Microoptics, H.-P. Herzig, ed. (Taylor & Francis, New York, 1996).

S. M. Ebstein, “Method and apparatus for changing the focal length of an optical system,” U.S. patent5,091,801 (February25, 1992).

S. M. Ebstein, “Achromatic diffractive optics,” U.S. patent application (February7, 1996).

Catalog, Schott Optical Glass, Duryea, Pa.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagrams of NIM optical elements corresponding to (a) an arbitrary phase plate and (b) a hybrid refractive-diffractive element.

Fig. 2
Fig. 2

Diffraction efficiency of a blazed NIM grating calculated by numerical propagation of a normally incident plane wave through the grating and measurement of the far-field energy in the desired order, as a function of λh/d2 for two different values of Δn, the index difference of the two materials.

Fig. 3
Fig. 3

Designed phase contours and actual interferograms of the polystyrene–SSK3 achromatic NIM optic with cubic phase: (a) design phase contours, (b) interferogram taken at 632.8 nm with the interferometer adjusted to compensate for the tilt of the cubic phase, (c) interferogram taken at 543.5 nm with tilt compensated as for (b).

Tables (2)

Tables Icon

Table 1 Comparison of the Diffraction Efficiency of a Conventional (Single-Material) DOE and an Achromatic-Phase NIM DOE Made from Polystyrene and SSK3

Tables Icon

Table 2 Losses for Beams Incident upon a NIM Micro-Fresnel Lens at an Anglea

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

OPD ( x ) = ( n 1 n 2 ) [ h ( x ) h 0 ] = Δ n Δ h .
n ( λ ) = n 0 + d ( λ λ 0 ) ,
λ 0 Δ d = Δ n 0 ,
Δ d = d 1 d 2 ,
Δ n 0 = n 1 ( λ 0 ) n 2 ( λ 0 ) .
λ D λ F λ C ( n D1 1 V D1 n D2 1 V D2 ) = n 01 n 02 .
φ ( x , y ) = k ( x 3 + y 3 ) ,

Metrics