Abstract

Tunable narrow-band cw difference-frequency generation at 8.7 μm was demonstrated in silver gallium selenide (AgGaSe2) at room temperature. The crystal was pumped by an injection-seeded Er/Yb-codoped fiber amplifier at 1.554 μm and a fiber-coupled diode-pumped monolithic ring Nd:YAG laser at 1.319 μm. The difference-frequency output was used for high-resolution spectroscopy of sulfur dioxide (SO2).

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Simon, Z. Benko, M. W. Sigrist, R. F. Curl, F. K. Tittel, Appl. Opt. 32, 6650 (1993).
    [CrossRef] [PubMed]
  2. S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
    [CrossRef]
  3. T. J. Whitley, J. Lightwave Technol. 13, 744 (1995).
    [CrossRef]
  4. Tran-Ba-Chu, M. Broyer, J. Phys. (Paris) 46, 523 (1985).
    [CrossRef]
  5. D. Roberts, Appl. Opt. 35, 4677 (1996).
    [CrossRef] [PubMed]
  6. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, Appl. Opt. 26, 4058 (1987).
    [CrossRef] [PubMed]

1996 (1)

1995 (1)

T. J. Whitley, J. Lightwave Technol. 13, 744 (1995).
[CrossRef]

1993 (1)

1992 (1)

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

1987 (1)

1985 (1)

Tran-Ba-Chu, M. Broyer, J. Phys. (Paris) 46, 523 (1985).
[CrossRef]

Barbe, A.

Barnes, W. L.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

Benko, Z.

Brown, L. R.

Broyer, M.

Tran-Ba-Chu, M. Broyer, J. Phys. (Paris) 46, 523 (1985).
[CrossRef]

Camy-Peyret, C.

Cannon, R. S.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

Curl, R. F.

Flaud, J.-M.

Gamache, R. R.

Goldman, A.

Grubb, S. G.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

Humer, W. F.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

Husson, N.

Jedrzejewski, K. P.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

Leilabady, P. A.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

Pickett, H. M.

Poynter, R. L.

Rinsland, C. P.

Roberts, D.

Rothman, L. S.

Sigrist, M. W.

Simon, U.

Smith, M. A. H.

Sweeney, K. L.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

Tittel, F. K.

Toth, R. A.

Townsend, J. E.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

Tran-Ba-Chu,

Tran-Ba-Chu, M. Broyer, J. Phys. (Paris) 46, 523 (1985).
[CrossRef]

Vendetta, S. W.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

Whitley, T. J.

T. J. Whitley, J. Lightwave Technol. 13, 744 (1995).
[CrossRef]

Wind-horn, T. H.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (1)

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Wind-horn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, J. E. Townsend, IEEE Photon. Technol. Lett. 4, 553 (1992).
[CrossRef]

J. Lightwave Technol. (1)

T. J. Whitley, J. Lightwave Technol. 13, 744 (1995).
[CrossRef]

J. Phys. (Paris) (1)

Tran-Ba-Chu, M. Broyer, J. Phys. (Paris) 46, 523 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of an 8.7-μm tunable single-frequency cw DFG source pumped by fiber-coupled diode and solid-state lasers operating at 1.319 and 1.554 μm. A wavelength-division multiplexer (WDM) was used to combine the two beams in a single fiber before mixing so that no adjustment of the beam overlap was necessary. The source was used for high-resolution spectroscopy of SO2.

Fig. 2
Fig. 2

Output power from an Er/Yb-codoped fiber amplifier before a Faraday isolator versus launched pump power at 1.064 μm. The amplifier is injection seeded by a 2-mW DFB diode laser at 1.554 μm.

Fig. 3
Fig. 3

Optical transmission of 10-cm-long Brewster window absorption cell filled with S02 at a pressure of 5 Torr. The sweep time was 50 s, the lock-in amplifier time constant was 0.1 s (12 dB/octave roll-off), and the choppier frequency was 2 kHz. The signal was detected without regard to phase (R component).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tan ρ = ½ sin 2 θ n ( λ , θ ) 2 n e ( λ ) 2 n 0 ( λ ) 2 .

Metrics