Abstract

We employ the self-dispersive nature of infrared–visible sum-frequency generation at interfaces to record sum-frequency spectra of molecular monolayers with a spectral resolution of a few inverse centimeters, using IR light with a spectral content of approximately 50 cm−1.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, Nature (London) 337, 519 (1989).
    [CrossRef]
  2. The angular dispersion for a reflection grating is given by dθdω=−sin θi+sin θrω cos θr, an expression similar to Eq. (1). Here θi and θr are the angles of incidence and diffraction, respectively.
  3. R. J. Bakker, D. A. Jaroszynski, A. F. G. van der Meer, D. Oepts, P. W. van Amersfoort, IEEE J. Quantum Electron. 30, 1635 (1994).
    [CrossRef]
  4. E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
    [CrossRef]
  5. G. M. H. Knippels, A. F. G. van der Meer, R. F. X. A. M. Mols, P. W. van Amersfoort, R. B. Vrijen, D. J. Maas, L. D. Noordam, Opt. Commun. 118, 546 (1995).
    [CrossRef]
  6. Note that we assume here that the IVSFG response of gold is spectrally flat over this frequency interval.
  7. P. Guyot-Sionnest, Proc. SPIE 1858, 334 (1993).
    [CrossRef]
  8. D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grassell, Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, Boston, Mass., 1991).

1995 (2)

E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
[CrossRef]

G. M. H. Knippels, A. F. G. van der Meer, R. F. X. A. M. Mols, P. W. van Amersfoort, R. B. Vrijen, D. J. Maas, L. D. Noordam, Opt. Commun. 118, 546 (1995).
[CrossRef]

1994 (1)

R. J. Bakker, D. A. Jaroszynski, A. F. G. van der Meer, D. Oepts, P. W. van Amersfoort, IEEE J. Quantum Electron. 30, 1635 (1994).
[CrossRef]

1993 (1)

P. Guyot-Sionnest, Proc. SPIE 1858, 334 (1993).
[CrossRef]

1989 (1)

Y. R. Shen, Nature (London) 337, 519 (1989).
[CrossRef]

’t Hooft, G. W.

E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
[CrossRef]

Auerhammer, J. M.

E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
[CrossRef]

Bakker, R. J.

R. J. Bakker, D. A. Jaroszynski, A. F. G. van der Meer, D. Oepts, P. W. van Amersfoort, IEEE J. Quantum Electron. 30, 1635 (1994).
[CrossRef]

Barmentlo, M.

E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
[CrossRef]

Colthup, N. B.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grassell, Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, Boston, Mass., 1991).

Eliel, E. R.

E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
[CrossRef]

Fateley, W. G.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grassell, Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, Boston, Mass., 1991).

Grassell, J. G.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grassell, Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, Boston, Mass., 1991).

Guyot-Sionnest, P.

P. Guyot-Sionnest, Proc. SPIE 1858, 334 (1993).
[CrossRef]

Jaroszynski, D. A.

R. J. Bakker, D. A. Jaroszynski, A. F. G. van der Meer, D. Oepts, P. W. van Amersfoort, IEEE J. Quantum Electron. 30, 1635 (1994).
[CrossRef]

Knippels, G. M. H.

G. M. H. Knippels, A. F. G. van der Meer, R. F. X. A. M. Mols, P. W. van Amersfoort, R. B. Vrijen, D. J. Maas, L. D. Noordam, Opt. Commun. 118, 546 (1995).
[CrossRef]

Lin-Vien, D.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grassell, Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, Boston, Mass., 1991).

Maas, D. J.

G. M. H. Knippels, A. F. G. van der Meer, R. F. X. A. M. Mols, P. W. van Amersfoort, R. B. Vrijen, D. J. Maas, L. D. Noordam, Opt. Commun. 118, 546 (1995).
[CrossRef]

Mols, R. F. X. A. M.

G. M. H. Knippels, A. F. G. van der Meer, R. F. X. A. M. Mols, P. W. van Amersfoort, R. B. Vrijen, D. J. Maas, L. D. Noordam, Opt. Commun. 118, 546 (1995).
[CrossRef]

Noordam, L. D.

G. M. H. Knippels, A. F. G. van der Meer, R. F. X. A. M. Mols, P. W. van Amersfoort, R. B. Vrijen, D. J. Maas, L. D. Noordam, Opt. Commun. 118, 546 (1995).
[CrossRef]

Oepts, D.

R. J. Bakker, D. A. Jaroszynski, A. F. G. van der Meer, D. Oepts, P. W. van Amersfoort, IEEE J. Quantum Electron. 30, 1635 (1994).
[CrossRef]

Shen, Y. R.

Y. R. Shen, Nature (London) 337, 519 (1989).
[CrossRef]

van Amersfoort, P. W.

E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
[CrossRef]

G. M. H. Knippels, A. F. G. van der Meer, R. F. X. A. M. Mols, P. W. van Amersfoort, R. B. Vrijen, D. J. Maas, L. D. Noordam, Opt. Commun. 118, 546 (1995).
[CrossRef]

R. J. Bakker, D. A. Jaroszynski, A. F. G. van der Meer, D. Oepts, P. W. van Amersfoort, IEEE J. Quantum Electron. 30, 1635 (1994).
[CrossRef]

van der Ham, E. W. M.

E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
[CrossRef]

van der Meer, A. F. G.

E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
[CrossRef]

G. M. H. Knippels, A. F. G. van der Meer, R. F. X. A. M. Mols, P. W. van Amersfoort, R. B. Vrijen, D. J. Maas, L. D. Noordam, Opt. Commun. 118, 546 (1995).
[CrossRef]

R. J. Bakker, D. A. Jaroszynski, A. F. G. van der Meer, D. Oepts, P. W. van Amersfoort, IEEE J. Quantum Electron. 30, 1635 (1994).
[CrossRef]

Vrehen, Q. H. F.

E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
[CrossRef]

Vrijen, R. B.

G. M. H. Knippels, A. F. G. van der Meer, R. F. X. A. M. Mols, P. W. van Amersfoort, R. B. Vrijen, D. J. Maas, L. D. Noordam, Opt. Commun. 118, 546 (1995).
[CrossRef]

Appl. Phys. A (1)

E. R. Eliel, E. W. M. van der Ham, Q. H. F. Vrehen, M. Barmentlo, G. W. ’t Hooft, J. M. Auerhammer, A. F. G. van der Meer, P. W. van Amersfoort, Appl. Phys. A 60, 113 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. J. Bakker, D. A. Jaroszynski, A. F. G. van der Meer, D. Oepts, P. W. van Amersfoort, IEEE J. Quantum Electron. 30, 1635 (1994).
[CrossRef]

Nature (London) (1)

Y. R. Shen, Nature (London) 337, 519 (1989).
[CrossRef]

Opt. Commun. (1)

G. M. H. Knippels, A. F. G. van der Meer, R. F. X. A. M. Mols, P. W. van Amersfoort, R. B. Vrijen, D. J. Maas, L. D. Noordam, Opt. Commun. 118, 546 (1995).
[CrossRef]

Proc. SPIE (1)

P. Guyot-Sionnest, Proc. SPIE 1858, 334 (1993).
[CrossRef]

Other (3)

D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grassell, Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, Boston, Mass., 1991).

Note that we assume here that the IVSFG response of gold is spectrally flat over this frequency interval.

The angular dispersion for a reflection grating is given by dθdω=−sin θi+sin θrω cos θr, an expression similar to Eq. (1). Here θi and θr are the angles of incidence and diffraction, respectively.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. The timing structure of the visible laser beam and that of the IR beam are indicated. The inset shows the directions of the wave vectors of the incident visible kVIS and kIR laser beams as well as the wave vector kSFG of the generated radiation at the sum frequency.

Fig. 2
Fig. 2

Sum-frequency spectrum of thiophenol on silver near 1000 cm−1 with the FELIX operating as a narrowband laser Δω ≈ 5 cm−1. Typical count rates are 25,000 photons/s on the peak of the resonance. The error bars at the steep edges of the resonance represent the unreproducibility as a result of uncontrollable wavelength variations (0.2%) of the free-electron laser. SFG, sum-frequency generated.

Fig. 3
Fig. 3

Top, sum-frequency spectra from a thin layer of gold (dotted–dashed curve) and from a monomolecular layer of thiophenol on silver (multiplied by 8, solid curve). The wavelength of the FELIX free-electron laser is set at 9.5 μm. Bottom, normalized sum-frequency spectrum of thiophenol on silver obtained by division of the two spectra of the upper frame. The inset shows the high-frequency tail; we measured this part by changing the wavelength setting of the free-electron laser.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω VIS sin θ vis ω IR sin θ IR = ω SFG sin θ SFG .
d θ SFG d ω IR = ω VIS ω SFG 2 cos θ SFG ( sin θ IR + sin θ VIS ) ,
d θ SFG d ω VIS = + ω IR ω SFG 2 cos θ SFG ( sin θ IR + sin θ VIS ) .

Metrics