Abstract

We present the design, fabrication, and characterization of a subwavelength-pulse-width spatially modulated diffractive array illuminator for an operating wavelength of 0.633 μm. Electromagnetic and scalar diffraction theories are used to reduce manufacturing difficulties while yielding high diffraction efficiency coupled with low reconstruction error. We employ direct electron beam writing and reactive ion etching to realize a transmission-type three-beam array illuminator in photoresist.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wyrowski, O. Bryngdahl, Rep. Prog. Phys. 54, 1481 (1991).
    [CrossRef]
  2. P. Ehbets, H. P. Herzig, D. Prongue, M. Gale, Opt. Lett. 17, 908 (1992).
    [CrossRef] [PubMed]
  3. S. J. Walker, J. Jahns, J. Opt. Soc. Am. A 7, 1509 (1990).
    [CrossRef]
  4. J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, Appl. Opt. 32, 2519 (1993).
    [CrossRef] [PubMed]
  5. W. Stork, N. Streibl, H. Haidner, P. Kipfer, Opt. Lett. 16, 1921 (1991).
    [CrossRef] [PubMed]
  6. M. W. Farn, Appl. Opt. 31, 4453 (1992).
    [CrossRef] [PubMed]
  7. P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 3572 (1994).
    [CrossRef]
  8. Z. Zhou, T. J. Drabik, J. Opt. Soc. Am. A 12, 1104 (1995).
    [CrossRef]
  9. M. E. Warren, R. E. Smith, G. A. Vawter, J. R. Wendt, Opt. Lett. 20, 1441 (1995).
    [CrossRef] [PubMed]
  10. F. T. Chen, H. G. Craighead, Opt. Lett. 20, 121 (1995).
    [CrossRef] [PubMed]
  11. E. Noponen, J. Turunen, J. Opt. Soc. Am. A 11, 1097 (1994).
    [CrossRef]
  12. A. Vasara, J. Turunen, J. Westerholm, M. R. Taghizadeh, Proc. SPIE 1319, 298 (1990).
    [CrossRef]
  13. H. P. Herzig, Jpn. J. Appl. Phys. 29, L1307 (1990).
    [CrossRef]
  14. F. Wyrowski, J. Opt. Soc. Am. A 7, 961 (1990).
    [CrossRef]
  15. K. Knop, J. Opt. Soc. Am. 68, 1206 (1978).
    [CrossRef]
  16. J. Turunen, P. Blair, J. M. Miller, M. R. Taghizadeh, E. Noponen, Opt. Lett. 18, 1022 (1993).
    [CrossRef] [PubMed]
  17. F. Rousseaux, A. M. Hagiri-Gosnet, H. Launois, J. Phys. IV (Paris) 4, 237 (1994).
    [CrossRef]

1995 (3)

1994 (3)

E. Noponen, J. Turunen, J. Opt. Soc. Am. A 11, 1097 (1994).
[CrossRef]

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 3572 (1994).
[CrossRef]

F. Rousseaux, A. M. Hagiri-Gosnet, H. Launois, J. Phys. IV (Paris) 4, 237 (1994).
[CrossRef]

1993 (2)

1992 (2)

1991 (2)

1990 (4)

S. J. Walker, J. Jahns, J. Opt. Soc. Am. A 7, 1509 (1990).
[CrossRef]

A. Vasara, J. Turunen, J. Westerholm, M. R. Taghizadeh, Proc. SPIE 1319, 298 (1990).
[CrossRef]

H. P. Herzig, Jpn. J. Appl. Phys. 29, L1307 (1990).
[CrossRef]

F. Wyrowski, J. Opt. Soc. Am. A 7, 961 (1990).
[CrossRef]

1978 (1)

Blair, P.

Bryngdahl, O.

F. Wyrowski, O. Bryngdahl, Rep. Prog. Phys. 54, 1481 (1991).
[CrossRef]

Chen, F. T.

Collischon, M.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 3572 (1994).
[CrossRef]

Craighead, H. G.

Drabik, T. J.

Ehbets, P.

Farn, M. W.

Gale, M.

Hagiri-Gosnet, A. M.

F. Rousseaux, A. M. Hagiri-Gosnet, H. Launois, J. Phys. IV (Paris) 4, 237 (1994).
[CrossRef]

Haidner, H.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 3572 (1994).
[CrossRef]

W. Stork, N. Streibl, H. Haidner, P. Kipfer, Opt. Lett. 16, 1921 (1991).
[CrossRef] [PubMed]

Herzig, H. P.

Jahns, J.

Kipfer, P.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 3572 (1994).
[CrossRef]

W. Stork, N. Streibl, H. Haidner, P. Kipfer, Opt. Lett. 16, 1921 (1991).
[CrossRef] [PubMed]

Knop, K.

Launois, H.

F. Rousseaux, A. M. Hagiri-Gosnet, H. Launois, J. Phys. IV (Paris) 4, 237 (1994).
[CrossRef]

Londolf, J.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 3572 (1994).
[CrossRef]

Miller, J. M.

Noponen, E.

Prongue, D.

Ross, N.

Rousseaux, F.

F. Rousseaux, A. M. Hagiri-Gosnet, H. Launois, J. Phys. IV (Paris) 4, 237 (1994).
[CrossRef]

Schwider, J.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 3572 (1994).
[CrossRef]

Sheridan, J. T.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 3572 (1994).
[CrossRef]

Smith, R. E.

Stork, W.

Streibl, N.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 3572 (1994).
[CrossRef]

W. Stork, N. Streibl, H. Haidner, P. Kipfer, Opt. Lett. 16, 1921 (1991).
[CrossRef] [PubMed]

Taghizadeh, M. R.

Turunen, J.

Vasara, A.

A. Vasara, J. Turunen, J. Westerholm, M. R. Taghizadeh, Proc. SPIE 1319, 298 (1990).
[CrossRef]

Vawter, G. A.

Walker, S. J.

Warren, M. E.

Wendt, J. R.

Westerholm, J.

A. Vasara, J. Turunen, J. Westerholm, M. R. Taghizadeh, Proc. SPIE 1319, 298 (1990).
[CrossRef]

Wyrowski, F.

F. Wyrowski, O. Bryngdahl, Rep. Prog. Phys. 54, 1481 (1991).
[CrossRef]

F. Wyrowski, J. Opt. Soc. Am. A 7, 961 (1990).
[CrossRef]

Zhou, Z.

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Phys. IV (1)

F. Rousseaux, A. M. Hagiri-Gosnet, H. Launois, J. Phys. IV (Paris) 4, 237 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. P. Herzig, Jpn. J. Appl. Phys. 29, L1307 (1990).
[CrossRef]

Opt. Eng. (1)

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 3572 (1994).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (1)

A. Vasara, J. Turunen, J. Westerholm, M. R. Taghizadeh, Proc. SPIE 1319, 298 (1990).
[CrossRef]

Rep. Prog. Phys. (1)

F. Wyrowski, O. Bryngdahl, Rep. Prog. Phys. 54, 1481 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Grating parameters for (a) a high-frequency grating and (b) a pulse-width-modulated element: dL is the carrier grating period, dG is the global period, and L = dG/dL is the number of carrier periods per array illuminator period, here L = 5.

Fig. 2
Fig. 2

Uniformity error and diffraction efficiency of a three-beam transmission-type pulse-width-modulated array illuminator as a function of the number of carrier periods per array illuminator period L = 2P, P = 3,…8, for different carrier grating periods dL.

Fig. 3
Fig. 3

Scanning electron micrograph of four carrier grating periods of the pulse-width-modulated element fabricated in photoresist, with dL = 0.5 μm, h = 1 μm, and c ≈ 0.140 μm.

Fig. 4
Fig. 4

Intensity distribution of the three-beam spot array imaged onto a CCD camera.

Metrics