Abstract

LP01–LP02 interference over an extended wavelength region is used to describe a new spectroscopic technique for determining the refractive-index profile of non-step-index optical fibers. The technique is illustrated with a fiber that shows an a-profile variation of the refractive index.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Bock, T. A. Eftimov, Proc. SPIE 2070, 65 (1993).
    [CrossRef]
  2. M. Spajer, Opt. Lett. 13, 239 (1988).
    [CrossRef] [PubMed]
  3. B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, Opt. Lett. 12, 729 (1987).
    [CrossRef] [PubMed]
  4. A. Sharma, R. Posey, Opt. Commun. 124, 111 (1996).
    [CrossRef]
  5. M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
    [CrossRef]
  6. C. E. Covington, J. Blake, S. L. A. Carrara, Opt. Lett. 19, 676 (1994).
    [CrossRef] [PubMed]
  7. K. Bohnert, G. C. deWit, J. Nehring, J. Lightwave Technol. 13, 94 (1995).
    [CrossRef]
  8. A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
    [CrossRef]
  9. F. Brinkmeyer, S. Heckman, Opt. Lett. 9, 28 (1984).
    [CrossRef] [PubMed]
  10. D. Uttam, Electron. Lett. 21, 1031 (1985).
    [CrossRef]
  11. J. L. McMillan, Electron. Lett. 19, 240 (1983).
    [CrossRef]
  12. A. Sharma, M. Dokhanian, Z. Wu, A. Williams, P. Venkateswarlu, Opt. Lett. 19, 1122 (1994).
    [PubMed]
  13. P. L. Baldeck, R. R. Alfano, J. Lightwave Technol. LT-5, 1712 (1987).
    [CrossRef]
  14. L. G. Cohen, P. Kaiser, J. B. MacChesney, P. B. O'Conner, H. M. Presby, Appl. Phys. Lett. 28, 472 (1975).
    [CrossRef]
  15. F. Gauthier, J. Auge, D. Gallon, M. Wehr, S. Blaison, IEEE J. Quantum Electron. QE-17, 885 (1981).
    [CrossRef]
  16. T. Okoshi, Optical Fibers (Academic, New York, 1982).
  17. K. Oyamada, T. Okoshi, IEEE Trans. Microwave Theory Tech. MTT-28, 1113 (1980).
    [CrossRef]
  18. R. H. West, J. Lightwave Technol. 62, 155 (1988).
    [CrossRef]
  19. R. A. Greenwell, C. E. Barnes, G. W. Nelson, Proc. SPIE 867, 10 (1987).

1996

A. Sharma, R. Posey, Opt. Commun. 124, 111 (1996).
[CrossRef]

1995

K. Bohnert, G. C. deWit, J. Nehring, J. Lightwave Technol. 13, 94 (1995).
[CrossRef]

1994

1993

W. J. Bock, T. A. Eftimov, Proc. SPIE 2070, 65 (1993).
[CrossRef]

1988

R. H. West, J. Lightwave Technol. 62, 155 (1988).
[CrossRef]

M. Spajer, Opt. Lett. 13, 239 (1988).
[CrossRef] [PubMed]

1987

R. A. Greenwell, C. E. Barnes, G. W. Nelson, Proc. SPIE 867, 10 (1987).

B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, Opt. Lett. 12, 729 (1987).
[CrossRef] [PubMed]

P. L. Baldeck, R. R. Alfano, J. Lightwave Technol. LT-5, 1712 (1987).
[CrossRef]

1986

M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
[CrossRef]

1985

D. Uttam, Electron. Lett. 21, 1031 (1985).
[CrossRef]

1984

1983

J. L. McMillan, Electron. Lett. 19, 240 (1983).
[CrossRef]

1981

F. Gauthier, J. Auge, D. Gallon, M. Wehr, S. Blaison, IEEE J. Quantum Electron. QE-17, 885 (1981).
[CrossRef]

1980

K. Oyamada, T. Okoshi, IEEE Trans. Microwave Theory Tech. MTT-28, 1113 (1980).
[CrossRef]

1975

L. G. Cohen, P. Kaiser, J. B. MacChesney, P. B. O'Conner, H. M. Presby, Appl. Phys. Lett. 28, 472 (1975).
[CrossRef]

Alfano, R. R.

P. L. Baldeck, R. R. Alfano, J. Lightwave Technol. LT-5, 1712 (1987).
[CrossRef]

Auge, J.

F. Gauthier, J. Auge, D. Gallon, M. Wehr, S. Blaison, IEEE J. Quantum Electron. QE-17, 885 (1981).
[CrossRef]

Baldeck, P. L.

P. L. Baldeck, R. R. Alfano, J. Lightwave Technol. LT-5, 1712 (1987).
[CrossRef]

Barnes, C. E.

R. A. Greenwell, C. E. Barnes, G. W. Nelson, Proc. SPIE 867, 10 (1987).

Blaison, S.

F. Gauthier, J. Auge, D. Gallon, M. Wehr, S. Blaison, IEEE J. Quantum Electron. QE-17, 885 (1981).
[CrossRef]

Blake, J.

Blake, J. N.

Bock, W. J.

W. J. Bock, T. A. Eftimov, Proc. SPIE 2070, 65 (1993).
[CrossRef]

Bohnert, K.

K. Bohnert, G. C. deWit, J. Nehring, J. Lightwave Technol. 13, 94 (1995).
[CrossRef]

Brinkmeyer, F.

Carquille, B.

M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
[CrossRef]

Carrara, S. L. A.

Claus, R. O.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Cohen, L. G.

L. G. Cohen, P. Kaiser, J. B. MacChesney, P. B. O'Conner, H. M. Presby, Appl. Phys. Lett. 28, 472 (1975).
[CrossRef]

Covington, C. E.

Culshaw, B.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

deWit, G. C.

K. Bohnert, G. C. deWit, J. Nehring, J. Lightwave Technol. 13, 94 (1995).
[CrossRef]

Dokhanian, M.

Eftimov, T. A.

W. J. Bock, T. A. Eftimov, Proc. SPIE 2070, 65 (1993).
[CrossRef]

Gallon, D.

F. Gauthier, J. Auge, D. Gallon, M. Wehr, S. Blaison, IEEE J. Quantum Electron. QE-17, 885 (1981).
[CrossRef]

Gauthier, F.

F. Gauthier, J. Auge, D. Gallon, M. Wehr, S. Blaison, IEEE J. Quantum Electron. QE-17, 885 (1981).
[CrossRef]

Greenwell, R. A.

R. A. Greenwell, C. E. Barnes, G. W. Nelson, Proc. SPIE 867, 10 (1987).

Heckman, S.

Huang, S. Y.

Jankovic, L.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Kaiser, P.

L. G. Cohen, P. Kaiser, J. B. MacChesney, P. B. O'Conner, H. M. Presby, Appl. Phys. Lett. 28, 472 (1975).
[CrossRef]

Kim, B. Y.

MacChesney, J. B.

L. G. Cohen, P. Kaiser, J. B. MacChesney, P. B. O'Conner, H. M. Presby, Appl. Phys. Lett. 28, 472 (1975).
[CrossRef]

Mailotte, H. J.

M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
[CrossRef]

McMillan, J. L.

J. L. McMillan, Electron. Lett. 19, 240 (1983).
[CrossRef]

Michie, W. C.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Nehring, J.

K. Bohnert, G. C. deWit, J. Nehring, J. Lightwave Technol. 13, 94 (1995).
[CrossRef]

Nelson, G. W.

R. A. Greenwell, C. E. Barnes, G. W. Nelson, Proc. SPIE 867, 10 (1987).

O'Conner, P. B.

L. G. Cohen, P. Kaiser, J. B. MacChesney, P. B. O'Conner, H. M. Presby, Appl. Phys. Lett. 28, 472 (1975).
[CrossRef]

Okoshi, T.

K. Oyamada, T. Okoshi, IEEE Trans. Microwave Theory Tech. MTT-28, 1113 (1980).
[CrossRef]

T. Okoshi, Optical Fibers (Academic, New York, 1982).

Oyamada, K.

K. Oyamada, T. Okoshi, IEEE Trans. Microwave Theory Tech. MTT-28, 1113 (1980).
[CrossRef]

Posey, R.

A. Sharma, R. Posey, Opt. Commun. 124, 111 (1996).
[CrossRef]

Presby, H. M.

L. G. Cohen, P. Kaiser, J. B. MacChesney, P. B. O'Conner, H. M. Presby, Appl. Phys. Lett. 28, 472 (1975).
[CrossRef]

Sharma, A.

Shaw, H. J.

Spajer, M.

M. Spajer, Opt. Lett. 13, 239 (1988).
[CrossRef] [PubMed]

M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
[CrossRef]

Uttam, D.

D. Uttam, Electron. Lett. 21, 1031 (1985).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Venkateswarlu, P.

Wehr, M.

F. Gauthier, J. Auge, D. Gallon, M. Wehr, S. Blaison, IEEE J. Quantum Electron. QE-17, 885 (1981).
[CrossRef]

West, R. H.

R. H. West, J. Lightwave Technol. 62, 155 (1988).
[CrossRef]

Williams, A.

Wu, Z.

Appl. Phys. Lett.

L. G. Cohen, P. Kaiser, J. B. MacChesney, P. B. O'Conner, H. M. Presby, Appl. Phys. Lett. 28, 472 (1975).
[CrossRef]

Electron. Lett.

D. Uttam, Electron. Lett. 21, 1031 (1985).
[CrossRef]

J. L. McMillan, Electron. Lett. 19, 240 (1983).
[CrossRef]

IEEE J. Quantum Electron.

F. Gauthier, J. Auge, D. Gallon, M. Wehr, S. Blaison, IEEE J. Quantum Electron. QE-17, 885 (1981).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

K. Oyamada, T. Okoshi, IEEE Trans. Microwave Theory Tech. MTT-28, 1113 (1980).
[CrossRef]

J. Lightwave Technol.

R. H. West, J. Lightwave Technol. 62, 155 (1988).
[CrossRef]

P. L. Baldeck, R. R. Alfano, J. Lightwave Technol. LT-5, 1712 (1987).
[CrossRef]

K. Bohnert, G. C. deWit, J. Nehring, J. Lightwave Technol. 13, 94 (1995).
[CrossRef]

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Opt. Commun.

A. Sharma, R. Posey, Opt. Commun. 124, 111 (1996).
[CrossRef]

M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
[CrossRef]

Opt. Lett.

Proc. SPIE

R. A. Greenwell, C. E. Barnes, G. W. Nelson, Proc. SPIE 867, 10 (1987).

W. J. Bock, T. A. Eftimov, Proc. SPIE 2070, 65 (1993).
[CrossRef]

Other

T. Okoshi, Optical Fibers (Academic, New York, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. 1-mJ light pulses at 532 nm from a Nd:YAG laser produce 540–620-nm stimulated light emission from a 100-m-long fiber (S) by either SRS or supercontinuum generation. Lens X couples this light normally into the second test fiber, whose refractive-index profile is to be determined. To investigate LP01–LP02 modal interference in the test fiber, the output light is filtered with an aperture A and spectrally analyzed with a monochromator (M), using lens Y.

Fig. 2
Fig. 2

LP01–LP02 interference in the test fiber modulates the intensity of six broad SRS Stokes orders produced in the first fiber. The spacing δλ between consecutive interference fringes shows a maximum near 590 nm and is due to the fact that βλ dispersion curves for the two modes become parallel at this wavelength.

Fig. 3
Fig. 3

Numerically calculated variation of the intermodal phase |ϕ(λ)/2π| ≡ |(β01β02)L/2π| for length L = 52 cm of the test fiber. We arbitrarily assume that ϕ(λ) = 0 at 490 nm for step-index fiber and at 550 nm for α-profile fiber. The numerical aperture NA, core radius a, and non-step-index parameter α have the following values: Curve (A), NA = 0.114, a = 3.2 μm (as quoted by the manufacturer); curve (B), NA = 0.116, a = 3.2 μm; curve (C), NA = 0.114, a = 3.3 μm; curve (D), α = 30, NA = 0.13, a = 3.23 μm; curve (E), α = 30, NA = 0.134, a = 3.23 μm; curve (F), α = 32, NA = 0.134, a = 3.23 μm; curve (G), α = 30, NA = 0.134, a = 3.3 μm. The experimentally measured values (×) agree very closely with plot (E).

Fig. 4
Fig. 4

Variation of the phase difference |ϕ(λ)/2π|0 or the number of LP01–LP02 interference fringes between 550 nm and λ0 with the fiber parameter α. Point ● is for a step-index fiber.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( λ ) = ( β 01 β 02 ) L ,
δ λ = 2 π / [ L ( Δ β ) / λ ) 2 π / ( ϕ / λ ) ,
ν ( 2 π / λ 0 ) a NA = 4.45 ,

Metrics