Abstract

We report the effective nonlinearity for photochromic conversion in a blue-membrane bacteriorhodopsin film hosted in a dry polyvinyl alcohol matrix. The shift in absorption maximum on photoconversion in this film is larger than that of the same material in hydrated form, thus offering a larger modulation of the refractive index. The photoexcited index modulation is stable for several months, which provides for holographic data recording and long-term photochromic data storage. The effective index modulation is experimentally measured and is in good agreement with the theoretical predictions based on the Kramers–Kronig transformation.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. W. Song, C. P. Zhang, R. Gross, R. R. Birge, Opt. Lett. 18, 775 (1993).
    [CrossRef] [PubMed]
  2. Q. W. Song, C. P. Zhang, R. Blumer, R. Gross, Z. Chen, R. R. Birge, Opt. Lett. 18, 1373 (1993).
    [CrossRef] [PubMed]
  3. R. R. Birge, Ann. Rev. Phys. Chem. 41, 683 (1990).
    [CrossRef]
  4. D. Oesterhelt, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
    [CrossRef] [PubMed]
  5. R. Thoma, N. Hampp, C. Brauchle, D. Oesterhelt, Opt. Lett. 16, 651 (1991).
    [CrossRef] [PubMed]
  6. O. Werner, B. Fisher, A. Lewis, I. Nebenzahl, Opt. Lett. 15, 1117 (1990).
    [CrossRef] [PubMed]
  7. Z. Chen, A. Lewis, H. Takei, I. Nebenzahl, Appl. Opt. 30, 5188 (1991).
    [CrossRef] [PubMed]
  8. N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometriia 2, 41 (1986).
  9. R. Thoma, N. Hampp, Opt. Lett. 17, 1158 (1992).
    [CrossRef] [PubMed]
  10. J. Downie, Opt. Lett. 20, 201 (1994).
    [CrossRef]
  11. C.-H. Chang, S.-Y. Liu, R. Jones, R. Govindjee, Biophys. J. 52, 617 (1987).
    [CrossRef] [PubMed]
  12. U. C. Fischer, P. Towner, D. Oesterhelt, Photochem. Photobiol. 33, 529 (1981).
    [CrossRef]
  13. A. Maeda, T. Iwasa, T. Yoshizawa, Biochemistry 19, 3825 (1980).
    [CrossRef] [PubMed]
  14. M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
    [CrossRef] [PubMed]

1994 (1)

1993 (2)

1992 (1)

1991 (3)

1990 (2)

1989 (1)

1987 (1)

C.-H. Chang, S.-Y. Liu, R. Jones, R. Govindjee, Biophys. J. 52, 617 (1987).
[CrossRef] [PubMed]

1986 (1)

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometriia 2, 41 (1986).

1981 (1)

U. C. Fischer, P. Towner, D. Oesterhelt, Photochem. Photobiol. 33, 529 (1981).
[CrossRef]

1980 (1)

A. Maeda, T. Iwasa, T. Yoshizawa, Biochemistry 19, 3825 (1980).
[CrossRef] [PubMed]

Birge, R. R.

Blumer, R.

Brauchle, C.

Chang, C.-H.

C.-H. Chang, S.-Y. Liu, R. Jones, R. Govindjee, Biophys. J. 52, 617 (1987).
[CrossRef] [PubMed]

Chen, Z.

Downie, J.

Fischer, U. C.

U. C. Fischer, P. Towner, D. Oesterhelt, Photochem. Photobiol. 33, 529 (1981).
[CrossRef]

Fisher, B.

Govindjee, R.

C.-H. Chang, S.-Y. Liu, R. Jones, R. Govindjee, Biophys. J. 52, 617 (1987).
[CrossRef] [PubMed]

Gross, R.

Hampp, N.

Ivanitskii, G. R.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometriia 2, 41 (1986).

Iwasa, T.

A. Maeda, T. Iwasa, T. Yoshizawa, Biochemistry 19, 3825 (1980).
[CrossRef] [PubMed]

Jones, R.

C.-H. Chang, S.-Y. Liu, R. Jones, R. Govindjee, Biophys. J. 52, 617 (1987).
[CrossRef] [PubMed]

Lewis, A.

Liu, S.-Y.

C.-H. Chang, S.-Y. Liu, R. Jones, R. Govindjee, Biophys. J. 52, 617 (1987).
[CrossRef] [PubMed]

Maeda, A.

A. Maeda, T. Iwasa, T. Yoshizawa, Biochemistry 19, 3825 (1980).
[CrossRef] [PubMed]

Nebenzahl, I.

Oesterhelt, D.

R. Thoma, N. Hampp, C. Brauchle, D. Oesterhelt, Opt. Lett. 16, 651 (1991).
[CrossRef] [PubMed]

D. Oesterhelt, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[CrossRef] [PubMed]

U. C. Fischer, P. Towner, D. Oesterhelt, Photochem. Photobiol. 33, 529 (1981).
[CrossRef]

Said, A. A.

Sheik-Bahae, M.

Song, Q. W.

Soskin, M. S.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometriia 2, 41 (1986).

Takei, H.

Taranenko, V. B.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometriia 2, 41 (1986).

Thoma, R.

Towner, P.

U. C. Fischer, P. Towner, D. Oesterhelt, Photochem. Photobiol. 33, 529 (1981).
[CrossRef]

Van Stryland, E. W.

Vsevolodov, N. N.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometriia 2, 41 (1986).

Werner, O.

Yoshizawa, T.

A. Maeda, T. Iwasa, T. Yoshizawa, Biochemistry 19, 3825 (1980).
[CrossRef] [PubMed]

Zhang, C. P.

Ann. Rev. Phys. Chem. (1)

R. R. Birge, Ann. Rev. Phys. Chem. 41, 683 (1990).
[CrossRef]

Appl. Opt. (1)

Avtometriia (1)

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometriia 2, 41 (1986).

Biochemistry (1)

A. Maeda, T. Iwasa, T. Yoshizawa, Biochemistry 19, 3825 (1980).
[CrossRef] [PubMed]

Biophys. J. (1)

C.-H. Chang, S.-Y. Liu, R. Jones, R. Govindjee, Biophys. J. 52, 617 (1987).
[CrossRef] [PubMed]

Opt. Lett. (7)

Photochem. Photobiol. (1)

U. C. Fischer, P. Towner, D. Oesterhelt, Photochem. Photobiol. 33, 529 (1981).
[CrossRef]

Q. Rev. Biophys. (1)

D. Oesterhelt, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectral characteristics of BR, the BLM, and the refractive-index modulation for the BLM: (a) The absorption band of ground-state BR undergoes a red shift on acidification or removal of cations (Δλ = 40 nm), indicating the formation of the BLM. (b) The visible absorption spectra of the BLM and its photoproduct (labeled BR470) as they occur in a 1.75-OD600 nm dried PVA film, (c) The result of a Kramers–Kronig transform of the specrtra in (b), predicting a refractive-index change at 633 nm of 1.0 × 10−3 accompanying full photoconversion.

Fig. 2
Fig. 2

Diagram of the experimental Z-scan apparatus. The shutter is open for a short time before every measurement so as to pump the sample back to BLM.

Fig. 3
Fig. 3

Experimental Z-scan results. The z coordinate is normalized by the diffraction length Z0. Curves a, b, c, d, e, and f represent average illumination intensities I0 of 492, 233, 123, 28, 1.84, and 0.028 W/cm2, respectively.

Tables (1)

Tables Icon

Table 1 Experimental Parameters and the Measurement Results of Δn for 633-nm cw Illumination

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( λ ) = 2.3026 2 π 2 d p . v . 0 A BR 570 ( λ ) A Blue ( λ ) 1 λ 2 / λ 2 d λ ,

Metrics