Abstract

We observed photon-gated spectral hole burning in Pr:YAG and assigned the hole-burning mechanism to selective photoionization of trivalent praseodymium. Gated holes were observed in absorption lines to the two lowest components of the 1D2 manifold. At 1.4 K the gating ratio is in excess of 1.5 × 104. Strong competition from the transient mechanism of optical pumping of hyperfine levels occurs below 6 K.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wittmann, R. M. Macfarlane, Opt. Lett. 21, 426 ( 1996).
    [CrossRef] [PubMed]
  2. A. Winnacker, R. M. Shelby, R. M. Macfarlane, Opt. Lett. 10, 350 ( 1985).
    [CrossRef] [PubMed]
  3. R. M. Macfarlane, J. Lumin. 38, 20 ( 1987), and references therein.
    [CrossRef]
  4. W. Moerner, Jpn. J. Appl. Phys. A 28, Suppl. 28–3, 221 ( 1989), and references therein;H. Suzuki, T. Nishi, T. Shimada, H. Hiratsuka, J. Appl. Phys. 73, 374 ( 1993).
    [CrossRef]
  5. W. E. Moerner, ed., Persistent Spectral Holeburning: Science and Applications (Springer-Verlag, Berlin, 1988);W. R. Babbitt, T. W. Mossberg, Opt. Lett. 20, 910 ( 1995), and references therein.
    [CrossRef] [PubMed]
  6. R. M. Shelby, A. C. Tropper, R. T. Harley, R. M. Macfarlane, Opt. Lett. 8, 304 ( 1983).
    [CrossRef] [PubMed]
  7. R. J. Reeves, R. M. Macfarlane, J. Opt. Soc. Am. B 9, 763 ( 1992).
    [CrossRef]
  8. J. M. Baker, B. Bleaney, Proc. R. Soc. London Ser. A 245, 156 ( 1958).
    [CrossRef]

1996 (1)

1992 (1)

1989 (1)

W. Moerner, Jpn. J. Appl. Phys. A 28, Suppl. 28–3, 221 ( 1989), and references therein;H. Suzuki, T. Nishi, T. Shimada, H. Hiratsuka, J. Appl. Phys. 73, 374 ( 1993).
[CrossRef]

1987 (1)

R. M. Macfarlane, J. Lumin. 38, 20 ( 1987), and references therein.
[CrossRef]

1985 (1)

1983 (1)

1958 (1)

J. M. Baker, B. Bleaney, Proc. R. Soc. London Ser. A 245, 156 ( 1958).
[CrossRef]

Baker, J. M.

J. M. Baker, B. Bleaney, Proc. R. Soc. London Ser. A 245, 156 ( 1958).
[CrossRef]

Bleaney, B.

J. M. Baker, B. Bleaney, Proc. R. Soc. London Ser. A 245, 156 ( 1958).
[CrossRef]

Harley, R. T.

Macfarlane, R. M.

Moerner, W.

W. Moerner, Jpn. J. Appl. Phys. A 28, Suppl. 28–3, 221 ( 1989), and references therein;H. Suzuki, T. Nishi, T. Shimada, H. Hiratsuka, J. Appl. Phys. 73, 374 ( 1993).
[CrossRef]

Reeves, R. J.

Shelby, R. M.

Tropper, A. C.

Winnacker, A.

Wittmann, G.

J. Lumin. (1)

R. M. Macfarlane, J. Lumin. 38, 20 ( 1987), and references therein.
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. A (1)

W. Moerner, Jpn. J. Appl. Phys. A 28, Suppl. 28–3, 221 ( 1989), and references therein;H. Suzuki, T. Nishi, T. Shimada, H. Hiratsuka, J. Appl. Phys. 73, 374 ( 1993).
[CrossRef]

Opt. Lett. (3)

Proc. R. Soc. London Ser. A (1)

J. M. Baker, B. Bleaney, Proc. R. Soc. London Ser. A 245, 156 ( 1958).
[CrossRef]

Other (1)

W. E. Moerner, ed., Persistent Spectral Holeburning: Science and Applications (Springer-Verlag, Berlin, 1988);W. R. Babbitt, T. W. Mossberg, Opt. Lett. 20, 910 ( 1995), and references therein.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy levels of Pr:YAG, showing the transitions in which photon-gated hole burning was observed. Other components of 1D2 and 3H4 are omitted.

Fig. 2
Fig. 2

Transient spectral holes that are due to optical pumping of the hyperfine levels of Pr:YAG at 1.4 K for 0.5 mW/cm2. (a) holes burned at the peak of the 609.58-nm transition from 3H4(1) → 1D2(1) (zero on the frequency scale), (b) the 605.86-nm transition from 3H4(1) → 1D2(2).

Fig. 3
Fig. 3

(a) Transient (hyperfine) and gated holes in the 609.58-nm absorption at 1.4 K. Note the transformation of antiholes into holes in the persistent gated case, (b) Transient (hyperfine) and gated holes in the 605.86-nm absorption at 1.4 K. The relative intensity of side holes is increased by the effects of saturation. For burning fluences, see the text.

Fig. 4
Fig. 4

(a) Multiple gated holes burned at 8 K, showing the effect of two-photon erasure during the writing of subsequent holes. Hole burning proceeded from low frequency to high frequency, (b) Effect of the addition of green light, which produces weak one-photon erasure.

Metrics