Abstract

Two lasing modes are observed for Sulforhodamine 640 in highly scattering media pumped by 3-ns 532-nm laser pulses. The stimulated-emission thresholds are found to depend on both concentration of laser dye and scattering particle density. At 2.5 × 10−2 M dye solution with TiO2 scattering nanoparticles from 5 × 109 cm−3 to 1011 cm−3, the thresholds are found to decrease by more than 2 orders of magnitude. The dominating lasing modes are found to switch from 650 to 620 nm with the increase of density of scatterers.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
    [CrossRef]
  2. W. L. Sha, C.-H. Liu, R. R. Alfano, Opt. Lett. 19, 1922 (1994).
    [CrossRef] [PubMed]
  3. R. M. Balachandran, N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
    [CrossRef] [PubMed]
  4. D. S. Wiersma, M. P. van Albada, A. Lagendijk, Nature (London) 373, 203 (1995); N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 204 (1995).
    [CrossRef]
  5. D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, Z. Li, Opt. Commun. 118, 462 (1995).
    [CrossRef]
  6. M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, Opt. Commun. 117, 475 (1995).
    [CrossRef]
  7. A. Rubio, N. Kumar, Phys. Rev. B 47, 2420 (1993).
    [CrossRef]
  8. P. Pradhan, N. Kumar, Phys. Rev. B 50, 9644 (1994).
    [CrossRef]
  9. S. John, G. Pang, “Theory of paint-on lasers,” Phys. Rev. A (to be published).
  10. E. G. Arthurs, D. J. Bradley, A. G. Roddie, Chem. Phys. Lett. 22, 230 (1973).
    [CrossRef]
  11. M. Maeda, Y. Miyazoe, Jpn. J. Appl. Phys. 11, 692 (1972).
    [CrossRef]

1995 (4)

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Nature (London) 373, 203 (1995); N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 204 (1995).
[CrossRef]

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, Z. Li, Opt. Commun. 118, 462 (1995).
[CrossRef]

M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, Opt. Commun. 117, 475 (1995).
[CrossRef]

R. M. Balachandran, N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
[CrossRef] [PubMed]

1994 (3)

P. Pradhan, N. Kumar, Phys. Rev. B 50, 9644 (1994).
[CrossRef]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

W. L. Sha, C.-H. Liu, R. R. Alfano, Opt. Lett. 19, 1922 (1994).
[CrossRef] [PubMed]

1993 (1)

A. Rubio, N. Kumar, Phys. Rev. B 47, 2420 (1993).
[CrossRef]

1973 (1)

E. G. Arthurs, D. J. Bradley, A. G. Roddie, Chem. Phys. Lett. 22, 230 (1973).
[CrossRef]

1972 (1)

M. Maeda, Y. Miyazoe, Jpn. J. Appl. Phys. 11, 692 (1972).
[CrossRef]

Alfano, R. R.

M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, Opt. Commun. 117, 475 (1995).
[CrossRef]

W. L. Sha, C.-H. Liu, R. R. Alfano, Opt. Lett. 19, 1922 (1994).
[CrossRef] [PubMed]

Arthurs, E. G.

E. G. Arthurs, D. J. Bradley, A. G. Roddie, Chem. Phys. Lett. 22, 230 (1973).
[CrossRef]

Balachandran, R. M.

R. M. Balachandran, N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Bradley, D. J.

E. G. Arthurs, D. J. Bradley, A. G. Roddie, Chem. Phys. Lett. 22, 230 (1973).
[CrossRef]

Cheng, B.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, Z. Li, Opt. Commun. 118, 462 (1995).
[CrossRef]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Hu, W.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, Z. Li, Opt. Commun. 118, 462 (1995).
[CrossRef]

John, S.

S. John, G. Pang, “Theory of paint-on lasers,” Phys. Rev. A (to be published).

Kumar, N.

P. Pradhan, N. Kumar, Phys. Rev. B 50, 9644 (1994).
[CrossRef]

A. Rubio, N. Kumar, Phys. Rev. B 47, 2420 (1993).
[CrossRef]

Lagendijk, A.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Nature (London) 373, 203 (1995); N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 204 (1995).
[CrossRef]

Lawandy, N. M.

R. M. Balachandran, N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Li, Z.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, Z. Li, Opt. Commun. 118, 462 (1995).
[CrossRef]

Liu, C.-H.

Maeda, M.

M. Maeda, Y. Miyazoe, Jpn. J. Appl. Phys. 11, 692 (1972).
[CrossRef]

Miyazoe, Y.

M. Maeda, Y. Miyazoe, Jpn. J. Appl. Phys. 11, 692 (1972).
[CrossRef]

Pang, G.

S. John, G. Pang, “Theory of paint-on lasers,” Phys. Rev. A (to be published).

Pradhan, P.

P. Pradhan, N. Kumar, Phys. Rev. B 50, 9644 (1994).
[CrossRef]

Roddie, A. G.

E. G. Arthurs, D. J. Bradley, A. G. Roddie, Chem. Phys. Lett. 22, 230 (1973).
[CrossRef]

Rubio, A.

A. Rubio, N. Kumar, Phys. Rev. B 47, 2420 (1993).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Sha, W. L.

Siddique, M.

M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, Opt. Commun. 117, 475 (1995).
[CrossRef]

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Nature (London) 373, 203 (1995); N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 204 (1995).
[CrossRef]

Wang, Q. Z.

M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, Opt. Commun. 117, 475 (1995).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Nature (London) 373, 203 (1995); N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 204 (1995).
[CrossRef]

Yang, J.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, Z. Li, Opt. Commun. 118, 462 (1995).
[CrossRef]

Yang, L.

M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, Opt. Commun. 117, 475 (1995).
[CrossRef]

Zhang, D.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, Z. Li, Opt. Commun. 118, 462 (1995).
[CrossRef]

Zhang, Y.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, Z. Li, Opt. Commun. 118, 462 (1995).
[CrossRef]

Chem. Phys. Lett. (1)

E. G. Arthurs, D. J. Bradley, A. G. Roddie, Chem. Phys. Lett. 22, 230 (1973).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Maeda, Y. Miyazoe, Jpn. J. Appl. Phys. 11, 692 (1972).
[CrossRef]

Nature (2)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Nature (London) 373, 203 (1995); N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 204 (1995).
[CrossRef]

Opt. Commun. (2)

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, Z. Li, Opt. Commun. 118, 462 (1995).
[CrossRef]

M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, Opt. Commun. 117, 475 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

A. Rubio, N. Kumar, Phys. Rev. B 47, 2420 (1993).
[CrossRef]

P. Pradhan, N. Kumar, Phys. Rev. B 50, 9644 (1994).
[CrossRef]

Other (1)

S. John, G. Pang, “Theory of paint-on lasers,” Phys. Rev. A (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: L1–L3, lenses; BS’s, beam splitters; F1, F2, neutral-density filters.

Fig. 2
Fig. 2

Normalized emission spectra of 2.5 × 10−2 M Sul-forhodamine 640 in methanol containing different densities of TiO2 scattering nanoparticles at different pump energies. (I) Neat dye solution: a, 0.7 μJ; b, 1.1 mJ; c, 26.4 mJ. (II) Scatter density of 1011 cm−3: a, 0.7 μJ; b, 0.3 mJ; c, 0.55 mJ; d, 8.8 mJ; e, 26.38 mJ. (III) Scatter density of 2.5 × 1010 cm−3: a, 0.7 μJ; b, 0.3 mJ; c, 0.55 mJ; d, 1.1 mJ. (IV) scatter density of 5 × 109 cm−3: a, 0.7 μJ; b, 0.3 mJ; c, 4.8 mJ; d, 16.12 mJ.

Fig. 3
Fig. 3

Emission spectra of 2.5 × 10−2 M Sulforhodamine 640 solution in methanol containing varying amounts of TiO2 nanoparticles at a pump energy of 0.55 mJ.

Fig. 4
Fig. 4

Dependence of peak intensity of two modes on pump energies for 2.5 × 10−2 M Sulforhodamine 640 in methanol containing different densities of scatterers: (a) 620-nm mode, (b) 650-nm mode. (1), (2), (3), and (4) correspond to scatter densities of neat solution and to TiO2 nanoparticle densities of 5 × 109 cm−3, 2.5 × 1010 cm−3, and 1011 cm−3, respectively.

Tables (1)

Tables Icon

Table 1 Thresholds and Transport Scattering Lengths, lt for 2.5 × 10−2 M Sulforhodamine 640 in Methanol at Wavelengths 620 and 650 nm with and without TiO2 Nanoparticlea

Metrics